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Abstract 

Given a sparse undirected graph G with weights on the edges, a k-plex partition of G is a partition of 

its set of nodes such that each component is a k-plex. A subset of nodes S is a k-plex if the degree of 

every node in the associated induced subgraph is at least |S|  k. The maximum edge-weight k-plex 

partitioning (Max-EkPP) problem is to find a k-plex partition with maximum total weight, where the 

partition’s weight is the sum of the weights on the edges in the solution. 

When k = 1, all components in the partition are cliques and the problem becomes the well-known 

maximum edge-weight clique partitioning (Max-ECP). However, and to our best knowledge, when k 

> 1, the problem has never been modeled. Actually, the literature on the k-plex addresses the search 

for a single component in an unweighted graph. 

We propose a polynomial size integer linear programming formulation for the Max-EkPP problem 

and consider the inclusion of additional topological constraints in the model. These constraints 

involve lower and upper limit capacity bounds in each component and upper bound constraints on 

the number of components in the final solution. All these characterizations preserve linearity and the 

initial polynomial size of the model. 

We also present computational tests in order to show the models’ performance under different 

parameters’ settings. These tests resort to benchmark and real-world graphs. 

 

Keywords: k-plex partitioning; integer linear programming modeling; non-hierarchical clustering; 
sparse graphs. 

 

Mathematics Subject Classification: 05A18, 05C69, 90C10, 90C35, 91C20 

 

 

 

                                                           
1 Corresponding author. Address: ISCAC – Quinta Agrícola – Bencanta, 3040-316 Coimbra, Portugal. Tel.: 
+351 239 802 000; fax: +351 239 445 445. 
E-mail address: pmartins@iscac.pt 



2 
 

1. Introduction 

 

In this paper we discuss a class of partitioning problems in undirected edge-weighted graphs, 

where each component in the partition characterizes a k-plex. In addition, we also discuss 

the inclusion of additional topological constraints, involving the number of nodes in each 

component and the number of components in the final solution. The study is mainly focused 

on modeling aspects, addressing sparse graphs. We will also devote attention to the applied 

perspective of the problems. 

Let G = (V,E) be a sparse undirected graph, where V = {1,…,n} is the set of nodes and E  

V 2 the set of edges, with edge weights wij  IR, for all (i,j)E. 

For a given integer k  0, a k-plex in G is a subset of nodes S  V where the degree of every 

node in the associated induced subgraph is at least |S|  k. When k = 1 a k-plex represents a 

clique. However, when k > 1, the k-plex becomes a degree based relaxation of the clique. 

This problem has been first proposed in Seidman and Foster (1978), involving the 

identification of a maximum cardinality k-plex in an unweighted sparse graph, known as the 

maximum k-plex problem (Max-kP problem). The problem was shown to be NP-hard in 

Balasundaram et al. (2011). Formulations for the Max-kP have been proposed in 

Balasundaram et al. (2011) and Martins (2010), while heuristics were discussed in Moser et 

al. (2009) and McClosky and Hicks (2012). Properties of k-plexes and a comparison with 

other clique’s relaxation concepts can be found in Pattilo et al. (2013). The Max-kP problem 

has applications, for instance, in HIV transmission (Rothenberg et al. 1998; Rothenberg et 

al. 2000), in social networks (Mukherjee and Holder 2004), in protein-protein interaction 

networks (Huber et al. 2007; Martins 2010), in text mining (Balasundaram 2008) and in 

stock markets (Boginsky et al. 2014). A version that involves weights on the nodes is 

discussed in Boginsky et al. (2014). 

So far, the k-plex problem has been addressed ignoring the existence of weights on the edges 

of the graph. So, we start defining the edge-weight of a k-plex as the sum of the weights of 

all the edges in the induced subgraph. This is a straightforward adaptation of the edge-

weight of a clique. In effect, cliques with maximum edge-weight have long been discussed 

in the literature (see, e.g., Park et al. 1996; Macambira and de Souza 2000; Gouveia and 

Martins 2015), but the same does not hold for edge-weight k-plexes, to our best knowledge. 

Actually, we can find in the literature a relevant number of applications involving the 

maximum edge-weight clique problem, namely in protein threading and alignment (Akutsu 
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et al. 2003; Akutsu et al. 2004), in protein side chain packing (Brown et al. 2006) and in 

market basket analysis (Cavique 2007). However, in many social and biological networks, a 

clique component can be much restrictive, namely when dealing with missing links or false 

negative connections in the graph. In those cases, cliques have been criticized for their 

overly restricted nature, which has motivated the emergence of the k-plex concept, among 

other relaxed versions of cliques (see, e.g., Pattilo et al. 2013). 

Unlike the former approaches that seek for a single component, the present paper proposes 

searching for a partition of G into distinct components. In this context, there is a significant 

research work in the literature addressing the maximum edge-weight cliques partitioning 

(Max-ECP) problem (see, e.g., Grötschel and Wakabayashi 1989, 1990; Dorndorf and Pesch 

1994; Ferreira et al. 1996; Hansen and Jaumard 1997; Mehrotra and Trick 1998, Wang et al. 

2006; Oosten et al. 2007; Punnen and Zhang 2012; Sukegawa and Miyauchi 2013; Brimberg 

et al. 2015; Zhou et al. 2015). However, we have found no references involving an edge-

weight k-plex partition version, which motivates the effort on the present work. Like the 

Max-ECP problem, a k-plex version can also be seen as a non-hierarchical clustering 

methodology, contributing to the exploratory class of techniques within data mining. The 

Max-ECP has been applied, for instance, in clustering and classification problems 

(Grötschel and Wakabayashi 1989), in stock market analysis (Boginski et al. 2006), in gene 

expression networks (Kochenberger et al. 2005; Pirim et al. 2014) and in other biological 

networks (Hüffner et al. 2014). 

A closely related problem, involving the partition of a graph into co-k-plexes is addressed in 

Cowen et al. (1997) and Trukhanov et al. (2013). This problem is known in the literature as 

defective coloring and it also belongs to the NP-hard class. A co-k-plex is a subset S  V 

where the degree of every node in the associated induced subgraph is at most k1. It can be 

seen as a complementary concept of a k-plex. When k = 1, the co-k-plex is an independent 

set. 

Most of the mentioned approaches on the Max-ECP assume that the graph is complete, 

namely when modeling the problem. Following a different direction, we discuss the problem 

on sparse graphs. We further discuss the incorporation of additional constraints addressing 

upper and lower limits on the sum of the nodes’ weights in each component (when G 

includes weights on the nodes). These constraints have also been discussed in the Max-ECP 

literature, namely in Johnson et al. (1993); Ferreira et al. (1996); Mehrotra and Trick (1998); 

Ji and Mitchell (2007) and Oosten et al. (2007). 
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In the present paper we propose discussing a partitioning problem where each component is 

a k-plex. A component, in this case, can possibly represent an unconnected subgraph. So, 

given an integer k  0, we want to find a k-plex partition of G with maximum total weight, 

denoted as the Max-EkPP problem. Considering the relationship among k-plexes and 

cliques, the Max-EkPP can be seen as a degree relaxation version of the Max-ECP. In fact, 

when k = 1 the two problems coincide. To our best knowledge, the Max-EkPP has never 

been discussed before. In addition, our motivation stems from the extensive number of 

applications on both Max-kP and the Max-ECP problems and the mentioned overly 

restrictive nature being endorsed to cliques. We also discuss the inclusion of additional 

topological constraints, involving upper and lower limits on the sum of the nodes’ weights in 

each component, and an upper limit on the number of components in the final solution. 

In this paper, we restrict the discussion to linear and polynomial sized (number of variables 

and constraints) formulations.  

 

In the next section we provide a detailed description of the Max-EkPP problem. In Section 3 

we formulate the Max-EkPP. Computational tests are conducted in Section 4 and the paper 

ends with a conclusions section. 

 

 

2. The maximum k-plex partitioning problem 

 

Given a simple undirected graph G = (V,E), with V = {1,…,n} the set of nodes and E  V 2 

the set of edges, a partition in G is characterized by a partition of its set of nodes V. When 

the partition involves p components, where each component is represented by Vi (i=1,…,p), 

we have V = V1…Vp with ViVj =  for all i,j=1,…,p and i < j. The subgraph of G 

induced by Vi is denoted by Gi , for all i=1,…,p, characterizing the associated partition in G. 

Each edge (i,j)E has an associated weight wij  IR. The weight of a clique or the weight of 

a k-plex is the sum of all their edge weights. If the graph further includes weights on the 

nodes, we also define non-negative parameters qi , representing the weight of node i, for all 

iV. 

The neighborhood of node i represents the set of edges incident to i in G, being defined by 

(i) = {(i,j)E: jV}, for all iV, with di = |(i)| representing the degree of node i in G. 
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Still within notations, the complementary graph of G is represented by Gc = (V,Ec), with Ec 

the set of missing edges in G, that is, Ec = {(i,j)V 2:  i > j and (i,j)E}}. We also denote by 

 c(i) the set of edges incident do i in Gc. 

 

For a given integer k  0, the maximum k-plex partitioning (Max-EkPP) problem is to find a 

partition of G with maximum total weight, where each component is a k-plex. When k = 1, 

the Max-EkPP is the well-known maximum (edge-weight) clique partitioning problem 

(Max-ECP). 

 

As mentioned in Section 1, the Max-ECP has been discussed assuming that G is a complete 

graph. However, there is no reason to prevent its usage when the graph is sparse. In effect, a 

large number of real-world problems are characterized in sparse graphs, where the missing 

edges truly mean that the connection does not exist. So, it makes sense to discuss the Max-

ECP in sparse graphs. On the other hand, when considering the Max-EkPP problem with k > 

1, we should only expect dealing with sparse graphs.  

 

For exemplifying, we consider the 8 nodes sparse graph introduced in Figure 1. The graph 

has 17 edges and density 0.607. 

 

 
Figure 1: Small weighted undirected graph with 8 nodes. 

 

Figure 2 shows the optimum solutions for the Max-EkPP problem for k = 1, 2 and 3, in 

images (a), (b) and (c), respectively. When k = 4 or 5, the solution involves two components: 

V1 = {1, 2, 3, 4, 5, 6, 7} and V2 = {8}; while for k  6 the solution is the entire graph G. The 

optimum values are 15500, 18300, 20800, 24700 and 30000, for k = 1, 2, 3, 4 (or 5) and 6, 

respectively. 
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               k = 1                                      k = 2                                        k = 3 

                         

                    (a)                                                      (b)                                                      (c)    

Figure 2: Optimum solutions of the Max-EkPP problem, for k = 1, 2 and 3. 

 

As expected, each node i in a component S from a Max-EkPP solution has degree at least |S| 

– k. For instance, in the solution for k = 3, node 8 must have degree at least |S| – k = 5 – 3 = 

2 in the subgraph induced by S, which means that it is allowed to miss at most k – 1 = 2 

nodes in component S. In fact, for any component S in a feasible solution of the Max-EkPP, 

di  |S| – k, for all iS. So, an immediate result of the k-plex definition establishes that if di  

|V| – k, for all iV, then an optimum solution of the Max-EkPP is the entire set V, assuming 

that wij  0. This suggests a direct relationship k and the minimum degree among all nodes in 

G, when discussing the Max-EkPP problem with all edges with non-negative weights, 

established in the following proposition. 

 

Proposition 1: Consider that wij  0 for all (i,j)E. If  i
Vi

dnk


 min , then an Max-EkPP 

optimum solution is V1 = V. 
 

Taken again the example in Figure 1, as   2min  iVi d , then the optimum solution becomes 

the entire graph for k  6. 

When the graph includes edges with negative weights, then the solutions may still involve 

more than a single component, no matter the value of k. To exemplify, consider the graph in 

Figure 1 with a single change in the weight of edge (1,6), becoming w57 = 4500. Figure 3 

shows the optimum solutions of Max-EkPP for k = 1, 2 and 3 on the modified graph. The 

optimum values are 11200, 13800 and 17800, for k = 1, 2 and 3, respectively. 

 

               k = 1                                      k = 2                                        k = 3 

                         
                    (a)                                                      (b)                                                      (c)    

Figure 3: Optimum solutions of the Max-EkPP problem for k = 1, 2, 3, on the graph with w16 = 4500. 
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When k = 4, the optimum partition is V1 = {2, 3, 4, 5, 7, 8}, V2 = {1} and V3 = {6}, with total 

cost 19000. For k  5, the optimum partition is V1 = {2, 3, 4, 5, 6, 7, 8} and V2 = {1}, with 

total cost 23000. 

In this case, all the solutions avoid the inclusion of edge (1,6) due to its heavy negative 

weight. Even in the version with k  6, in which the degree connectivity condition is entirely 

relaxed, the optimum solution brought two independent components, showing that 

Proposition 1 may not hold when the graph includes negative weights on the edges. On the 

other hand, if the end nodes of an edge with negative weight are in the same component, 

then the edge must belong to the solution. 

 

Another immediate result of the k-plex states that a component S with |S|  k may 

correspond to a set of singletons, contradicting the cohesiveness principle of a component. 

These components include no edges and we denote them as spurious, being treated as 

isolated nodes. As expected, spurious components are more frequent when k increases and 

when the graph becomes sparser. Other less cohesive components can also come up when |S| 

 k or |S| is not much larger than k. These may include unconnected components. In this 

study, we do not give much relevancy to those components because they do not represent the 

main stream of the partition discussion. We will concentrate our attention in the larger and 

heaviest components instead. 

 

When discussing the Max-EkPP problem as a clustering non-hierarchical approach with a 

given topological structure, we may be interested on the inclusion of additional conditions 

involving the size and the number of components/clusters in the final solution. Some of 

those conditions can include upper and lower limits on the sum of the nodes’ weights in 

each component/cluster, and an upper limit on the number of components/clusters in the 

solution. In order to exemplify, we consider the results returned by the Max-EkPP problem 

for different values of the upper limit on the sum of the nodes’ weights in each component 

(parameter Q2) for k = 1, 2 and 3. To this purpose, we take the example in Figure 1 and 

assume that the nodes’ weights are all equal to 1 (qi = 1, for all iV). Figure 4 shows the 

results, considering Q2 = 2, 3, 4 and 5. 
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 k = 1 k = 2 k =3 

Q2 = 2 
 

cost = 12000 

 

cost = 12000 

 

cost = 12000 

Q2 = 3 
 

cost = 15000 

 

cost = 15100 

 

cost = 15100 

Q2 = 4 
 

cost = 15500 
 

cost = 17600 

 

cost = 19500 

Q2 = 5 
 

cost = 15500 

 

cost = 18300 
 

cost = 20800 

Figure 4: Optimum solutions of the Max-EkPP problem for k = 1, 2, 3 and Q2 = 2, 3, 4, 5. 

 

In this case, the solutions of Max-EkPP for Q2  6 are the same as those obtained for Q2 = 5. 

We could also observe the solutions involving the lower limit for the capacity in each 

component, or the upper limit for the number of components. However, the use of any of 

these additional topological constraints should be problem dependent, considering the 

practical application in hands. In addition, all these boundary conditions can be handled 

together, as long as the feasibility set is not empty. 

 

 

3. Modeling the Max-EkPP problem 

 

In the present section we propose mathematical formulations for the Max-EkPP problem. 

We start addressing the Max-EkPP for k = 1, that is, the Max-ECP problem. Then, we 

discuss the versions for k > 1. We also include a section for introducing the additional 

topological constraints. 
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3.1 The Max-EkPP for k = 1 

 

As mentioned above, the Max-EkPP for k = 1 (or Max-ECP) has long been discussed in the 

literature. However, in all those cases, it has been modeled assuming that G is complete. The 

most popular formulation for the Max-ECP involves a single set of binary edge variables, 

 





otherwise     0

component same  the tobelong  and  nodes if     1 ji
xij   ,   for all (i,j)E 

and the model is (see, Grötschel and Wakabayashi 1989, 1990) 

 max 
Eji

ijij xw
),(

 

 s.t.   1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (1) 

(F1c)    1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (2) 

  1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (3) 

    1,0ijx   ,   for all (i,j)E       (4) 

We denote this formulation by F1c (considering that k = 1 and G is complete). The set of 

constraints (1-3) is denoted by triangle inequalities, and they guarantee the transitivity 

propriety, establishing that if nodes i and j are in the same component (edge (i,j) is in the 

solution) and j and k also belong to the same component (edge (j,k) is in the solution), then 

the three nodes integrate the same component and edge (i,k) is forced to belong to the 

solution. These inequalities guarantee that each component represents a clique. In fact, due 

to the inclusionwise property, every subset of a clique is still a clique. So, a clique can be 

seen as a composition of triangles. 

An alternative formulation is also proposed in Johnson et al. (1993). It uses edge/component 

and node/component variables, so requiring the prior definition of a set of components. The 

number of variables is much larger than in F1c, although requiring a smaller number of 

constraints.  

Another alternative formulation is discussed in Mehrotra and Trick (1998). In this case, it 

considers an additional set of node/component variables and is based on the minimization of 

the sum of the weights of the edges that have end nodes in different components. However, 

this alternative formulation involves an even larger set of constraints. 

In spite of the large number of inequalities involved in F1c, the model is still considered in 

recent works on the Max-ECP problem (see, e.g., Jaehn and Pesch 2013; Bettinelli et al. 
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2015; Brimberg, et al. 2015). Besides, as shown in Grötschel and Wakabayashi (1990), the 

linear programming relaxation (LP-relaxation) of F1c is “a quite reasonable” relaxation of 

the convex hull of the set of incidence vectors that characterize clique partitionings of G 

(assumed complete). So, we follow the same motivation and conduct all the present work 

over the modeling structure of F1c. 

 

If graph G is sparse, the number of triangles decreases and the model should reflect it. The 

inclusion of the missing edges with sufficiently negative weights on the edges, proposed in 

Brimberg et al. (2015), does not allow profiting from the sparseness of the graph. On the 

other hand, if we remove from F1c all the variables associated to absent edges, the model 

provides a correct characterization of the Max-ECP problem. Yet, it includes a large number 

of redundant triangle constraints, namely all those involving 3 or 2 missing edges. We 

should also remove all the triangle inequalities involving a single missing edge and such that 

the missing edge does not correspond to the variable with negative sign. Thus, if we remove 

those constraints, we can obtain a much more compact formulation for the Max-ECP, 

depending on the sparseness of the graph. It uses that same set of {xij} variables. We denote 

it by F1s. 

 max 
Eji

ijij xw
),(

 

 s.t.   1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (5) 

(F1s)    1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (6) 

  1 ikjkij xxx    ,     for all (i,j),(j,k),(i,k)E  with  i < j < k  (7) 

    1 jkik xx   ,     for all (i,k),(j,k)E  and  (i,j)E  with  i < j < k  (8) 

     1,0ijx   ,   for all (i,j)E       (9) 

The set of constraints (5-8) are obtained from the triangle inequalities (1-3) after removing 

the previously mentioned redundant constraints. If we ignore inequalities (8) from F1s, the 

feasibility set includes other solutions besides clique partitionings. For instance, using again 

the example in Figure 1, the solution returned by F1s without constraints (8) is the entire 

graph G. 
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3.2 The Max-EkPP for k > 1 

 

For modeling the Max-EkPP with k > 1, we introduce an additional set of variables 

characterizing the missing edges in G. The new variables are defined by  

 





otherwise     0

component same  the tobelong  and  nodes if     1 ji
vij   ,   for all (i,j)Ec 

We further use the following notation 

 







 c),( if   

),( if   
},{

Ejiv

Ejix
vx

ij

ij

ijij   ,   for all (i,j)EEc 

Hence, the formulation for the Max-EkPP with k > 1, denoted by Fks, is 

max 
Eji

ijij xw
),(

 

s.t.  1},{},{},{  ikikjkjkijij vxvxvx  ,  for all (i,j),(j,k),(i,k)EEc  with  i < j < k (10) 

(Fks)  1},{},{},{  ikikjkjkijij vxvxvx  ,  for all (i,j),(j,k),(i,k)EEc  with  i < j < k (11) 

         1},{},{},{  ikikjkjkijij vxvxvx  ,  for all (i,j),(j,k),(i,k)EEc  with  i < j < k (12) 

 1
)(),( c




kv
iji
ij



   ,     for all iV       (13) 

   1,0ijx   ,   for all (i,j)E        (14) 

   1,0ijv   ,   for all (i,j)Ec        (15) 

Using the additional set of variables {vij}, we can characterize each component as a clique, 

composed by edges from E and from Ec. Thus, we can resort to the structure of the triangle 

inequalities (1-3) for characterizing partitions into cliques on a complete graph. This way, as 

we can control the number of missing edges belonging to the solution (variables {vij}), we 

can put an upper limit on the number missing edges incident to a given node iV, imposed 

by inequalities (13). 

For the particular case with k = 2, the model has many redundant constraints. In fact, due to 

constraints (13), all the triangle inequalities on (i,j,k)V 3 such that the three edges belong to 

set Ec are redundant. The same way, and also due to (13), among those involving two 

missing edges, all the triangle inequalities 1 ikjkij xvv  for (i,j),(j,k)Ec and (i,k)E are 

redundant, as well. 



12 
 

The number of variables in Fks is    21 nn  and the number of constraints is n
n











3
3 , 

when k  3. This is almost the same size of model F1c for the Max-ECP problem on 

complete graphs. As mentioned above, the model has a smaller number of inequalities when 

k = 2. 

Model Fks could have been defined just using variables x notation, extending the original set 

to the edges in the complementary graph Gc. This alternative characterization could possibly 

simplify the notation. However, we opted to use variables v in order to clearly distinguish 

the two sets of edges, trying to simplify the exposition. 

 

3.3 Additional topological constraints 

 

From a non-hierarchical clustering perspective, and assuming that the topological structure 

matters, finding a partition of G into cliques or into k-plexes may also come with additional 

constraints. The most usually discussed constraints within the Max-ECP problem involve 

upper and lower bounds on the sum of the weights of the nodes in each component (see, 

Johnson et al. 1993; Ferreira et al. 1996; Mehrotra and Trick 1998; Ji and Mitchell 2007; 

Oosten et al. 2007); and/or an upper limit on the number of components in the solution (see, 

Mehrotra and Trick 1998). 

We can model lower and upper bound limits on the sum of the weights of the nodes in each 

component using the set of variables {xij} and {vij} in the previously described models. 

Considering lb as the lower bound and ub the upper bound, the mentioned constraints are, 

- for models F1c and F1s: 

 lower bound constraints i
ij

ijj qlbxq 
 )(

  ,     for all iV  (16) 

 upper bound constraints i
ij

ijj qubxq 
 )(

  ,     for all iV  (17) 

- for models Fks: 

 lower bound constraints i
iVj

ijijj qlbvxq 
 }{\

},{   ,     for all iV (18) 

 upper bound constraints i
iVj

ijijj qubvxq 
 }{\

},{   ,     for all iV (19) 

 

Within the Max-ECP problem literature, lower bounding constraints similar to those in (16) 

were considered in Oosten et al. (2007), while alternative versions of the upper bounding 
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constraints (17) were discussed in Ferreira et al. (1996) and Ji and Mitchell (2007) using 

node variables. 

 

On the other hand, the set of variables considered in formulation F1c does not allow an easy 

adaptation for modeling a limit on the number of components, as mentioned in Mehrotra and 

Trick (1998). So, we consider an additional set of node/component variables that relate each 

node to each of the available components, that is 

 





otherwise     0

component   tobelongs  node if     1 pi
z p

i   ,   for all iV  and  p{1,…,P} 

with {1,…,P} the set of components and P the upper bound for the number of components. 

Thus, the following constraints model the intended limitation 

- for models F1c and F1s: 

 1
1




P

p

p
iz   ,     for all iV       (20) 

 ij
p
j

p
i xzz  1   ,     for all (i,j)E  and  p{1,…,P}    (21) 

 1 p
j

p
i zz   ,     for all (i,j)Ec  and  p{1,…,P}     (22) 

- for models Fks: 

 1
1




P

p

p
iz   ,     for all iV       (23) 

 },{1 ijij
p
j

p
i vxzz    ,     for all i,jV  with  i < j  and  p{1,…,P}  (24) 

 

Constraints (20) guarantee that each node belongs to one of the components. Inequalities 

(21) impose that two nodes can only be in the same component if there is an edge linking 

them in G; otherwise, when the edge does not exists, the two nodes cannot share a 

component, as stated in (22). 

Then, for those addressing models Fks, constraints (23) are the same as (20); while 

inequalities (24) integrate (21) and (22), stating that two nodes may belong to the same 

component if they are linked by and edge or if they are related by a missing edge selected by 

the solution. 

As mentioned above, upper limit constraints on the number of components were also 

discussed in Ferreira et al. (1996) and Mehrotra and Trick (1998). They consider the same 

set of variables }{ p
iz , using the range of variation of the extra p index to set the limit on the 

number of components in the solution. 
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4. Computational tests 

 

In the present section we discuss the models proposed in Section 3. This discussion is 

conducted in two parts: 

i) exploring the applicability of the problem, including some of the additional topological 

constraints introduced in Subsection 3.3; and 

ii) analyzing the performance of the models proposed in Subsections 3.1 and 3.2 using a 

commercial solver. 

These two parts are discussed in the forthcoming subsections. 

 
The models were solved using ILOG/CPLEX 11.2 and all experiments were performed 

under Microsoft Windows 7 operating system on an Intel Core i7-2600 with 3.40 GHz and 8 

GB RAM. When running the mixed integer programming (MIP) algorithm of CPLEX we 

used most default settings, which involve an automatic procedure that uses the best rule for 

variable selection and the best-bound search strategy for node selection in the branch-and-

bound tree. We have set an upper time limit of 10800 seconds for each test. The times are 

reported in seconds. 

 

4.1 Applying the Max-ECP and the Max-EkPP problems 

 

In order to discuss the applicability of problems Max-ECP and Max-EkPP, we consider two 

types of biological networks involving metabolic reactions’ interactions and metabolite’s 

interactions. These are Saccharomyces cerevisiae metabolic networks, taken from Förster et 

al. (2003). The original data involves 1393 metabolic reactions (we substituted reciprocal 

(bidirectional) reactions into two single-direction reactions) that use 991 metabolites. Each 

metabolic reaction is a chemical pathway that uses reactants to generate products. Both 

reactants and products are metabolites being shared among reactions. For instance, we can 

characterize a reaction as: A + B  C + D, meaning that metabolites A and B are reactants 

producing metabolites C and D (as products). The same way, we can have another reaction 

characterized by: A + C + E  B + F. The two reactions share three different metabolites: 

A, B and C. Using the entire set of metabolic reactions from the Saccharomyces cerevisiae 

data, described in the mention paper, we built the following network structures: 

- SC-NIP-m-tr (for r = 1,…,5): each node in V represents a metabolite (excluding isolated 

ones) and each edge in E represents a pair of metabolites that share at least r reaction; thus 
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(i,j)E if there are at least r common reactions that include both metabolites i and j (no 

matter the side: reactant or product). Weight cij represents the number of reactions sharing 

the two metabolites i and j.  

- SC-NIP-r-tm (for m = 1,…,5): each node in V represents a reaction (excluding isolated 

ones) and each edge in E represents a pair of reactions sharing at least m metabolites; thus 

(i,j)E if there are at least m common metabolites among the two reactions i and j (no 

matter the side the metabolites appear in). Weight cij represents the number of metabolites 

sharing the two reactions i and j.  

Isolated nodes were removed from the original data, in all instances under discussion. Table 

1 indicates the number of nodes, the number of edges and the density of each of the 

proposed graphs. d denotes the density of the graph, with   12  nnEd . 

 

Instance n |E| d Instance n |E| d 

SC-NIP-m-t1 991 4161 0.00848 SC-NIP-r-t1 1393 56276 0.05804 

SC-NIP-m-t2 602 1520 0.00840 SC-NIP-r-t2 1183 17776 0.02542 

SC-NIP-m-t3 177 269 0.01727 SC-NIP-r-t3 663 1782 0.00812 

SC-NIP-m-t4 129 166 0.02011 SC-NIP-r-t4 377 321 0.00453 

SC-NIP-m-t5 75 84 0.03027 SC-NIP-r-t5 45 27 0.02727 

Table 1: Characterization of the two types of Saccharomyces cerevisiae graphs under discussion. 

 

We have applied problem Max-EkPP for all the reported instances, considering k = 1, 2, 3. 

When k = 1, the problem is the Max-ECP. Thus, we have used model Fks with k =1, 2, 3 for 

solving the problems and resorted to CPLEX to solve the models. 

Tables 2 and 3 show the results for the classes of instances SC-NIP-m and SC-NIP-r, 

respectively; concerning problems Max-ECP and Max-EkPP for k = 2, 3. They report:  

- the optimum values or the best feasible solutions (opt/best) found by the branch-and-

bound; 

- the duality gap at termination, defined by d_gap = ((UB – LB) / UB)*100, in percent, with 

UB indicating the best upper bound and LB indicating the best lower bound or the 

optimum, found by the branch-and-bound; 

- “time” reports the branch-and-bound execution time (in seconds); 

- “comp” indicates the number of components in the solution; 

- “largest” is the number of nodes in the largest cardinality component in the solution; 

- “singlt” indicates the proportion of singletons over the total number of nodes (in percent). 
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When the optimum is not attained within the given time limit, the d_gap is not null and the 

time is denoted by “ > ”. When memory is insufficient for building the model or insufficient 

for reading it, we put the following indication: “o.m.” (out-of memory). 

 

k Instance opt/best d_gap time comp largest singlt 

1 SC-NIP-m-t1 1866 0.00 2296.94 340 8 16.65 

 SC-NIP-m-t2 1538 0.00 1.25 206 7 19.77 

 SC-NIP-m-t3 910 0.00 0.02 48 5 35.03 

 SC-NIP-m-t4 831 0.00 0.00 38 5 31.78 

 SC-NIP-m-t5 723 0.00 0.00 27 4 21.33 

2 SC-NIP-m-t1 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t2 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t3 1021 0.00 50.43 47 7 28.81 

 SC-NIP-m-t4 907 0.00 3.03 39 5 24.03 

 SC-NIP-m-t5 801 0.00 0.20 26 4 17.33 

3 SC-NIP-m-t1 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t2 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t3 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t4 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-m-t5 887 0.00 34.20 24 5 16.00 

Table 2: Optimum solutions for the class of instances SC-NIP-m, using models Fks, k=1, 2, 3. 

 

k Instance opt/best d_gap time comp largest singlt 

1 SC-NIP-r-t1 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t2 34576 0.00 4.26 262 121 4.40 

 SC-NIP-r-t3 5411 0.00 0.08 245 39 3.92 

 SC-NIP-r-t4 1232 0.00 0.00 170 11 1.86 

 SC-NIP-r-t5 140 0.00 0.02 21 4 2.22 

2 SC-NIP-r-t1 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t2 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t3 3183 71.62 > 176 35 31.37 

 SC-NIP-r-t4 1245 0.00 6.40 170 11 1.06 

 SC-NIP-r-t5 140 0.00 0.01 21 4 2.22 

3 SC-NIP-r-t1 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t2 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t3 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t4 o.m. ---- ---- ---- ---- ---- 

 SC-NIP-r-t5 140 0.00 0.14 21 4 2.22 

Table 3: Optimum/best solutions for the class of instances SC-NIP-r, using models Fks, k=1, 2, 3. 
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From the computational stand point, all instances have been solved to optimality for the 

version with k = 1 (Max-ECP), except the largest example involving metabolic reactions’ 

interactions (SC-NIP-r-t1). For this version the model is more compact. In effect, model’s 

F1s number of variables and constraints depends on the sparsity of the graph. The version 

with k = 2 is harder as it uses model F2s that includes a larger number of variables and 

constraints. In this case, we have not been able to read the models involving the two largest 

instances in both classes (reactions’ interactions and metabolites’ interactions); and instance 

SC-NIP-r-t3 could not reach the optimum within the given time limit. The harder task, 

however, was observed solving the version with k = 3, which requires model F3s. In this 

case, we could only solve the smaller instances SC-NIP-m-t5 and SC-NIP-r-t5. In fact, the 

number of variables and constraints in model F3s (and for all models Fks with k  3) is 

almost the same as if we were dealing with the cliques partitioning problem on the complete 

graph, so almost the same size as model F1c. So, it is not a surprise to stop sooner when 

trying to solve increasingly larger sized instances. 

When looking to the solutions, and starting with the networks involving metabolite’s 

interactions (instances SC-NIP-m), the heaviest components reveal some of the most shared 

metabolites. If ignoring the singletons and the low heavy components, the solutions show a 

modular structure of the metabolites in the system. To further stress this observation, we 

report in Table 4 the main information on the three heaviest components in each of the 

optimum solutions reported in Table 2. The list of the metabolites involved in each of the 

mentioned components is shown in Table A1 in the Appendix. 

 

k Instance 
heaviest 

components 
total weight 

total different 
reactions 

cardinality 

1 SC-NIP-m-t1 1st 343 191 8 

  2nd 102 90 4 

  3rd 87 63 6 

 SC-NIP-m-t2 1st 320 186 7 

  2nd 102 90 4 

  3rd 76 62 5 

 SC-NIP-m-t3 1st 242 136 5 

  2nd 96 90 3 

  3rd 56 54 3 

 SC-NIP-m-t4 1st 242 136 5 

  2nd 90 90 2 
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  3rd 50 16 4 

 SC-NIP-m-t5 1st 214 125 4 

  2nd 90 90 2 

  3rd 45 45 2 

2 SC-NIP-m-t3 1st 342 187 7 

  2nd 96 90 3 

  3rd 59 37 4 

 SC-NIP-m-t4 1st 276 184 5 

  2nd 90 90 2 

  3rd 59 37 4 

 SC-NIP-m-t5 1st 262 178 4 

  2nd 90 90 2 

  3rd 59 37 4 

3 SC-NIP-m-t5 1st 326 181 5 

  2nd 126 116 4 

  3rd 79 37 5 

Table 4: Three heaviest components’ information of the optimum solutions reported in Table 2. 

 

In Table 4 we distinguish the total number of reactions sharing any pair of metabolites in the 

component (column “total weight”), from the total number of distinct reactions involved in 

the component (column “total different reactions”). Column “cardinality” indicates the 

number of metabolites in the component. 

The selected components in Table 4 show that there are a very small number of metabolites 

acting together in a large number of reactions. Some of these reactions share more than a 

pair of metabolites in the same component. However, the total number of distinct reactions 

is still large compared to the number of metabolites involved. 

To exemplify, Figures 5, 6 and 7 show the mentioned heaviest components involving 

instance SC-NIP-m-t5 for k = 1, 2 and 3, respectively. We recall that each edge in the graph 

associated to instance SC-NIP-m-t5 links a pair of metabolites sharing at least 5 metabolic 

reactions. 

 

                             
                  (1st )                                                   (2nd )                                                   (3rd )    

Figure 5: Three heaviest components in the optimum solution of instance SC-NIP-m-t5 for k = 1. 
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                  (1st )                                                   (2nd )                                                   (3rd )    

Figure 6: Three heaviest components in the optimum solution of instance SC-NIP-m-t5 for k = 2. 

 

         
                         (1st )                                            (2nd )                                           (3rd )    

Figure 7: Three heaviest components in the optimum solution of instance SC-NIP-m-t5 for k = 3. 

 

The exemplified solutions show, in general, that the components get larger when the k-

plexes become more relaxed, bringing additional metabolites into the modules. In addition 

and when considering the heaviest components, the metabolites involved can be seen as 

hubs in the entire system of metabolic reactions. 

 

On the other hand, the solutions on the networks involving metabolic reactions’ interactions 

(instances SC-NIP-r) present a partition of the entire set of reactions into modules. This 

modular structure of the system may show a higher level picture of the system, involving a 

modular structure on macro-pathways, namely on the heaviest components. In this case, the 

heaviest components are quite large, compared with the former approach, as indicated in 

Table 3 and shown in Table 5 for the three heaviest components in each optimum solution 

found using the instances graphs SC-NIP-r. We have omitted the feasible solution found for 

instance SC-NIP-r-t3 with k = 2 due to its large gap. 

 

k Instance 
heaviest 

components 
total weight 

total different 
metabolites 

cardinality 

1 SC-NIP-r-t2 1st 15188 68 121 

  2nd 8077 56 90 

  3rd 2756 13 45 

 SC-NIP-r-t3 1st 2296 13 39 

  2nd 1399 26 30 
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  3rd 122 12 9 

1, 2 SC-NIP-r-t4 1st 220 4 11 

  2nd 150 10 9 

  3rd 89 7 7 

1, 2, 3 SC-NIP-r-t5 1st 30 5 4 

  2nd 6 6 2 

  3rd 6 6 2 

Table 5: Three heaviest components’ information of the optimum solutions reported in Table 3. 

 

As mentioned above, the three heaviest components in the solutions reported in Table 5 

involve a very large number of metabolic reactions, also sharing a large number of 

metabolites. Yet, the entire sum of metabolites shared among the reactions (characterizing 

the components’ weight) involves many repetitions. In effect, when looking just for the set 

of distinct metabolites being shared in each component, its cardinality becomes much 

smaller. 

 

Still within the networks involving metabolic reactions’ interactions (instances SC-NIP-r), 

we have also explored the partitioning problem considering one of the types of topological 

constraints described in Subsection 3.3. So, considering the particular instance SC-NIP-r-t3 

with k = 1, we have included the additional condition that sets an upper bound for the 

cardinality in each component. To this purpose, we took model F1s addressing problem 

Max-ECP with the additional set of constraints (17), and assuming that qi = 1 for all iV. 

The problem was discussed considering the upper bound limit set to ub = 10 and 5, that is, 

forcing all components in any feasible partition to have no more than 10 and 5 metabolic 

reactions, respectively. The purpose is to obtain more balanced solutions concerning the 

cardinality of the components. Notice that the mentioned instance cannot be solved when 

imposing a lower limit equal to 2 or higher in the cardinality of the components. This is due 

to the sparsity of the associated graph. 

Table 6 shows the main information concerning the best solutions found for the two cases, 

using the same notation considered in Table 3. 

 

k Instance ub opt/best d_gap time comp largest singlt 

1 SC-NIP-r-t1 5 1991 1.10 > 261 5 3.77 

  10 2805 0.46 > 249 10 4.07 

Table 6: Best solutions for instance SC-NIP-r-t3 with k = 1 and ub = 5 and 10. 
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We have not reached the optimum in both cases within the given time limit. However, the 

gaps are relatively small. As expected, the number of components increases when the upper 

bound on the components’ cardinalities gets tighter. Figure 8 describes the number of 

components for the range of cardinalities in the solution of the unrestricted version and in 

the solutions of the two restricted cases, for ub = 5 and 10. 

 

Figure 8: Number of components for the range of cardinalities in the solutions for the unrestricted version and 
for the cases with ub = 5 and 10. 

 

The horizontal axis is set only up to 10. The missing information concerns the unrestricted 

version, involving just one component with cardinality 30 and one component with 

cardinality 39. Also, the vertical axis varies only up to 30, cutting just the number of 

components of cardinality 2. In fact, the number of components of that type is very large, 

being equal to 206, 205 and 204 for the unrestricted version and for the restricted cases with 

ub = 10 and 5, respectively. The number of nodes (metabolic reactions) involved in these 

components represents 62.14%, 61.84% and 61.54% of the entire number of nodes in the 

graph, respectively. As observed in the graphic in Figure 8, apart from those with cardinality 

2, the number of components in each of the other cardinalities gets more balanced as the 

upper bound becomes smaller. Actually, in the case with ub = 5, the number of components 

with cardinalities 3, 4 and 5 is equal to 19, 17 and 21, respectively. 
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4.2 Computational performance of models F1s and Fks 

 

This subsection intends to perform some computational test on the models proposed in 

Subsections 3.1 and 3.2 for sparse graphs. To this purpose, we consider a selection of 

benchmark instances taken from the DIMACS database. We took all instances with |V|  100 

and all those with 100 < |V|  200 and density (d) at most 0.25. These instances belong to the 

c-fat, MANN, hamming and johnson families. The original DIMACS instances do not 

include weights on edges. So, we followed the weighting strategy proposed in Pullan (2008), 

setting wij = ((i + j) mod 200) + 1. We do not report the other DIMACS instances’ results 

because we were not able to answer them.  

Table 7 presents the computational results’ information using models Fks for k = 1, 2, 3. The 

columns’ labels are the same as those considered in Tables 2 and 3. The notation “-----“, in 

this case, means that we have not found a single feasible solution. 

 

Instance n d k opt/best d_gap time comp largest singlt 

c-fat200-1 200 0.077 1 98711 0.00 47.08 19 12 0.00 

   2 98711 0.00 567.44 19 12 0.00 

   3 ----- ----- ----- ----- ----- ----- 

c-fat200-2 200 0.163 1 213248 0.00 0.22 9 24 0.00 

   2 213248 0.00 47.28 9 24 0.00 

   3 ----- ----- ----- ----- ----- ----- 

hamming-6-2 64 0.905 1 65472 0.00 0.20 2 32 0.00 

   2 65472 6.25 > 2 32 0.00 

   3 65472 23.30 > 2 32 0.00 

hamming-6-4 64 0.349 1 6336 0.00 0.34 16 4 0.00 

   2 6966 149.85 > 13 6 1.56 

   3 4567 307.67 > 21 4 0.00 

johnson8-2-4 28 0.556 1 1260 0.00 0.06 7 4 0.00 

   2 1355 57.89 > 6 5 0.00 

   3 1996 36.67 > 4 8 0.00 

johnson8-4-4 70 0.768 1 27864 17.57 > 6 14 0.00 

   2 12770 438.28 > 11 9 2.86 

   3 12948 463.40 > 12 8 0.00 

MANN_a9 45 0.927 1 14868 0.00 1215.34 3 16 0.00 

   2 23047 1.82 > 2 26 0.00 

   3 33660 0.00 319.24 2 36 0.00 

Table 7: Computational tests’ information on the selected DIMACS instances using models Fks, k = 1, 2, 3. 
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All instances under discussion were solved to optimality when addressing the Max-ECP 

problem, except for instance johnson8-4-4. This is the larger dimensional example with 

density d > 0.25. 

For the other problems, with k  2, addressing the Max-EkPP, things become much harder, 

especially when k gets larger, in general. The main exception is instance MANN_a9. A 

reason for this exception can be related with its very high density. This observation seems 

contradictory with another one in the previous paragraph. However, when the graph is very 

dense, larger values of k allow higher relaxed components, benefiting an easier coverage of 

the entire set of nodes using a smaller number of components. This is probably the same 

reason for justifying the smaller gaps observed for instance hamming-6-2 (denser) when 

compared with those obtained for instance hammin-6-4 (sparser). A similar observation 

applies between instances c-fat200-2 (denser) and c-fat200-1 (sparser). 

From an empirical stand point, these tests suggest that solving the Max-EkPP is harder for 

sparser graphs. They also suggest that the versions with k > 1 are probably much harder than 

the Max-ECP, worsening when k increases.  

 

 

5. Conclusions 

 

This paper discusses the maximum edge weight k-plex partitioning problem on sparse 

graphs. When k = 1, it becomes the well-known maximum edge weight clique partitioning. 

To our best knowledge, the versions with k  2 have never been discussed in the literature. 

So, we present the first formulations for those versions of the problem. In the computational 

tests performed, all the models were solved using a commercial branch-and-bound based 

solver (IBM/CPLEX) with no further techniques. 

Although short, this computational experience was sufficient to confirm our worst 

expectations, showing that the Max-EkPP problem is probably much harder, from an 

empirical stand point, than the Max-ECP, and worsening when k increases. 

These tests involved instances with up to 200 nodes, being solved to optimality, in general, 

when addressing the Max-ECP problem. Yet, and for the same instances, we seldom solved 

to optimality the Max-EkPP within the given time limit. In fact, in most cases, we were 

probably far from the optimums. 



24 
 

An immediate conclusion is that the solving techniques require more sophisticated 

methodologies, namely resorting to decomposition methods or cutting plane processes, 

starting from relaxed versions of the original models. 

Other relevant contributions may involve alternative ideas for modeling the Max-EkPP; or 

the identification of additional non-trivial cuts to further strengthen the models’ linear 

programming relaxation polyhedron. 

In addition, considering the potential practical relevancy of the problem, and reminding that 

many practical applications involve large sized graphs, we also detach the importance of 

building heuristic algorithms for the Max-EkPP. 

Nevertheless, even considering the proposed models’ limitations, we used them to discuss a 

real-world applied problem on two biological networks involving metabolic reactions’ 

interactions and metabolite’s interactions, respectively. Although very sparse, these graphs 

were much larger than those used in the previously mentioned computational tests. These 

examples were used to detach the applicability of the problems. 

We should not ignore, however, that having a formulation and a solver engine can be an 

easier way for many researchers to first apply the Max-EkPP problem. 
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Appendix 
 

Table A1 presents the list of the metabolites involved in each of the components reported in 

Table 4, addressing the class of instances on networks involving metabolite’s interactions 

(instances SC-NIP-m). 
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  heaviest components 

k Instance 1st 2nd 3rd 

1 SC-NIP-m-t1 ADP  

AMP  

ATP  

L=Aspartate  

L=Glutamate  

L=Glutamine 

NH3  

Orthophosphate  

L=2=Aminoadipate_6=semialdehyde  

N6=(L=1,3=Dicarboxypropyl)=L=lysine  

NADP+  

NADPH  

Acetyl=CoA  

Acyl=carrier_protein  

CO2  

CoA  

Hexadecanoyl=CoA  

Malonyl=CoA  

 SC-NIP-m-t2 ADP  

AMP  

ATP  

L=Glutamate  

L=Glutamine 

NH3  

Orthophosphate  

L=2=Aminoadipate_6=semialdehyde  

N6=(L=1,3=Dicarboxypropyl)=L=lysine  

NADP+  

NADPH  

Acetyl=CoA  

Acyl=carrier_protein  

CO2  

CoA  

Hexadecanoyl=CoA  

Malonyl=CoA  

 SC-NIP-m-t3 ADP  

ATP  

L=Glutamate  

L=Glutamine  

Orthophosphate  

L=2=Aminoadipate_6=semialdehyde  

NADP+  

NADPH  

5=Phospho=alpha=D=ribose_1=diphosphate 

AMP 

Pyrophosphate  

                                                                                         

 SC-NIP-m-t4 ADP  

ATP  

L=Glutamate  

L=Glutamine  

Orthophosphate  

NADP+  

NADPH 

ADPM 

ATPM 

CoAM 

OrthophosphateM 

                                                                                         

 SC-NIP-m-t5 ADP  

ATP  

CO2  

Orthophosphate  

NADP+  

NADPH 

NADPHM 

NADP+M 

                                                                                         

2 SC-NIP-m-t3 ADP  

AMP  

ATP  

L=Aspartate  

L=Glutamate  

L=Glutamine  

Pyrophosphate  

L=2=Aminoadipate_6=semialdehyde  

NADP+  

NADPH  

ADPM 

AMPM 

ATPM 

PyrophosphateM 

 SC-NIP-m-t4 ADP  

AMP  

ATP   

Pyrophosphate  

UTP 

NADP+  

NADPH  

ADPM 

AMPM 

ATPM 

PyrophosphateM 

 SC-NIP-m-t5 ADP  

AMP  

ATP   

Pyrophosphate  

NADP+  

NADPH  

ADPM 

AMPM 

ATPM 

PyrophosphateM 

3 SC-NIP-m-t5 ADP  

AMP  

ATP   

Orthophosphate 

Pyrophosphate  

H2O2 

NADP+  

NADPH 

Oxygen 

ADPM 

AMPM 

ATPM 

OrthophosphateM 

PyrophosphateM 

Table A1: Lists of metabolites in the three heaviest components reported in Table 4. 
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