SEMINÁRIO

SISTEMAS DINÂMICOS

17 de Janeiro | 10h30 | sala 6.2.33

Non-hyperciclicity for certain classes of linear dynamical systems

Alexandre Tavares Baraviera (Universidade Federal do Rio Grande do Sul)

Abstract

: The investigation of the properties of bounded linear maps on certain vector spaces (Hilbert or Banach spaces, for example) is a very rich and active area. In particular, the existence of dense orbits (that in this context is known as hyperciclicity) attracts a lot of attention, as well as the extension of classical results to this setting, like hyperbolicity and shadowing, among many others. A source of examples is the weighted shift, defined as $B_{w}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(w_{2} x_{2}, w_{3} x_{3}, \ldots\right)$ where w_{i} are positive and bounded real numbers and $\mathrm{x}=\left(\mathrm{x}_{1}, x_{2}, \ldots\right)$ is a point of the space $\ell_{p}(N)$. Another map, with a less rich dynamics, is the diagonal map defined on the same space by $\mathrm{D}_{\lambda}\left(x_{1}, x_{2}, \ldots\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots\right)$, where is a complex number with norm . Is ist λ_{i} also usefull to consider the map $\mathrm{T}_{w, \lambda}=D_{\lambda}+B_{w}$, where hyperciclicity is known to hold for some parameters. Our goal in this talk is to exhibit some conditions for λ and wwhere the map is NOII hyperciclic; we also show how to extend the method for anohter class of linear maps. This is a joint work with G. Pessil (UFRGS).

