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Abstract 

Money collection presents particular problems in terms of effective vehicle routing. Planning the 

collection or distribution of money for ATMs or parking meters gives rise to two problems: while the 

total collecting time should be minimized, tours on successive days should be different to prevent 

robberies.  

The combination of these two problems is named as the Dissimilar Routing Problem. When the safes to 

be collected are located along the streets, it corresponds to an arc routing problem, which we call 

DARP, and when the money is from ATMs, it corresponds to a vehicle routing problem (DVRP), 

usually referred to as the peripatetic routing problem. The former problem arises in a Portuguese 

company in charge of street parking in Lisbon. The firm needs to define tours to collect safes from 

parking meters, minimizing the total collecting time. To avoid robberies these tours cannot be repeated 

or somehow anticipated. For this new problem, we present an integer programming (IP) model and 

develop a matheuristic. Preliminary experiments are provided with data that mimic the real confidential 

data. Results point to a good performance of the matheuristic, while the smaller instances can be solved 

to optimality with the IP model and a commercial solver. 

 

Keywords: Arc Routing; Dissimilar Arc Routing; Integer Programming Formulation; Flow Models; 
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1.  Introduction 

This paper considers arc routing problems (ARP) were the tours for a specific vehicle must be 

defined in a weekly based time horizon and, for safety purposes, need to be dissimilar. As in 

an ARP it starts and finishes its servicing tours in the same point, the depot. The services are 

associated to the links of the network. The main differences regarding a generic ARP are: 

 A weekly time horizon is considered, and the services, as required by the real case in 

study, are to be performed on a daily basis, which mean that all demand links must be 

serviced once a day, thus identifying a Rural Postman Problem (RPP) tour per day; 

 Dissimilar tours must be defined so as to prevent robberies, and thus we aim to identify 

one RPP tour per day which, in turn, is somehow dissimilar from remaining tours. 

We consider that tours similarity is related with the position each task is served in its tour, and 

thus, to measure similarity between tours we divide each day into periods. Two tours are fully 

dissimilar if no task is served during the same period. Of course that, if the number of tasks 
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served during the same period in two tours decrease (increase) so thus the dissimilarity 

(similarity) between them. Imposing the identification of a group of tours, one per day, with 

no similarities between each pair would be too restrictive. Thus, we opt to relax this 

imposition, and in accordance to our application, we considered only two types of constraints 

to avoid similarities. First, by imposing that the service of each arc in two consecutive days is 

performed in different time periods. Second, by imposing that no more than a given threshold 

of services can be repeated in the same period in the whole time horizon. 

This work was motivated by a case study in a Portuguese company in charge of street parking 

in Lisbon. The firm needs to define tours to daily collect the safes from parking meters that 

minimize the total collecting time. To avoid robberies these tours cannot be repeated or 

somehow anticipated. 

The contribution of this paper is fourfold. First, we define and model a new problem, the 

Dissimilar Arc Routing (DARP), in Section 3. Second, the definition of a dissimilarity 

measure is proposed for the first time for arc routing cases. Third, in Section 4, we develop a 

matheuristic, based on three different models here proposed, allowing us the identification of 

good quality feasible solutions. Fourth, we analyse the application of this methodology to 

random generated instances, inspired by a real case study involving collection and money 

transportation, in Section 5.  

A literature review, next presented, illustrates the few studies on dissimilarity and routing 

problems, always focusing on the node routing case. 

2.  Literature review 

Dissimilar tours often appear related to cash-in-transit, security patrol tours, evacuation or 

even the transportation of hazardous materials. These problems require different approaches, 

justifying different studies in the literature to tackle them. Additionally, and as far as we 

know, the works considering dissimilar tours only deal with node routing cases. This paper is 

thus the first application embedding the dissimilarity of the tours within an arc routing 

environment. Note that in a node routing case the clients must be visited and reached through 

dissimilar links. In a parallel arc routing case, the links are the ones to be visited, and the 

dissimilarity must then be defined on the sequence of repeated links, which, in turn, results in 

a different and harder problem to solve. 

Despite being a critical point with regard to safety, only a few papers address the dissimilarity 

of the tours, and the VRP version is, as usual, the starting point. (Talarico, et al., 2015) 

defined and studied the 𝑘-dissimilar VRP (𝑘d-VRP), where the similarity between two VRP 

solutions is defined based on the edges shared between them. The aim is to identify 𝑘 

dissimilar VRP solutions, i.e., tours, starting and ending at a depot node, visiting all clients 
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once, and within the vehicles’ capacity. (Talarico, et al., 2015b) defined the Risk-constrained 

Cash-in-Transit Vehicle Routing Problem (RCTVRP), taking special attention to the risk of 

being robbed, which they assumed to be proportional both to the amount of cash being carried 

and to the distance covered by the vehicle carrying the cash. The total risk incurred by a 

vehicle is, in turn, limited by a risk threshold that can be computed. They also presented 

metaheuristics and benchmark instances, and further developments on this work gave rise to 

the recent publication (Talarico, et al., 2016). 

An identical problem, also endorsing the node routing case, is referred to as the “Peripatetic” 

Vehicle Routing Problem (PVRP) introduced by (Krarup, 1975) for the multiple salesman 

case, and named as the m-Peripatetic Salesman Problem (m-PSP). In this problem no repeated 

arcs are allowed to visit the clients. Thus, while in the 𝑘dVRP the repetition of arcs is upper 

limited, the PVRP explicitly forbids repetitions along the planning horizon. These problems 

also differ on the defined objective. While 𝑘dVRP aims to minimize the worst case 

travelling cost, the PVRP minimizes the total cost over all periods.  

The PVRP may also be applied to network design, as proposed by (De Kort, 1991) whom 

identify several edges-disjoint cycles to prevent link failure in a network. (De Kort, 1991) and 

(De Kort, 1993) proposed lower bounds and exact procedures to solve the problem. (De Kort 

& Volgenant, 1994) generalized the previous studies to tackle a 2-PSP in which each cycle 

contains each vertex at most once and a penalty is payed for vertices not included in any 

cycle.  

Later on, (Duchenne, et al., 2005) and (Duchenne, et al., 2012) proposed new exact 

algorithms for the m-PSP to identify disjoint Hamiltonian cycles of minimum total cost. In 

(Duchenne, et al., 2012) vehicles with limited capacity are also considered. 

(Ngueveu, et al., 2010a) and (Ngueveu, et al., 2010b) apply the PVRP to identify patrol tours 

to security agents, knowing that customers are visited several times within a planning horizon, 

and no repeated arcs are allowed to reach each client.  

(Wolfler-Calvo & Cordone, 2003) studied a security problem where every night, guards must 

visit all the assigned clients through different tours, amongst other impositions. Alarms can 

occur, requiring for immediate reaction, i.e. for the redesign of tours in a just-in-time way. An 

ideal time is identified for each client node in such a way that the times are uniformly 

distributed through the night. To avoid the tours repetition along the time horizon, time 

windows are defined around these ideal times, imposing minimum and maximum times 

between two consecutive inspections.  

(Yan, et al., 2012) apply a m-PVRP to reduce operating costs and ensure safety in a cash-in-

transit problem. Authors argue that different tours and schedules to enforce safety make it 
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difficult to formulate. The developed model, a multi-commodity network flow, incorporates a 

similarity defined from both time and space measures for routing and scheduling purposes. 

Thus, different visit times of the same customer during the planning horizon and different 

sequences of visited points (space measures) are imposed. In their application, pick-up and 

delivery services are needed, and thus the amount of money carried by a vehicle along a road 

is not usually correlated with the number of demand points. 

(Michallet, et al., 2014) also deal with cash in transit problems, with the scope to design tours 

that look “random”, and spread over the time horizon. As the probability of being robbed 

increases at the vehicles stop (e.g. needed to load or unload an ATM) authors forbid the 

vehicles arriving out of the clients time windows to avoid waiting times. The problem is 

named as the periodic VRP with time spread constraints on services (PVRPTS).  

The transportation of hazardous materials also demands for dissimilar tours to prevent 

disasters as well as to not expose always to the same population. Usually, these transports also 

consider population densities, to try to avoid the use of paths through highly density 

population areas, making an acceptable trade-off between geographic diversity and 

performance. (Dadkar, et al., 2008) and (Erkut, et al., 2007) are examples of this type of 

studies, focusing on the paths diversification as well as some stochastic characteristics. These 

problems significantly differ from the one here tackled. In fact, different objectives are 

defined, as minimizing the risk of accidents (e.g. avoiding the use of tunnels) being the 

solutions’ characteristics also distinct (e.g. the dissimilarity imposed may depend on the 

population densities and on some pollution aspects in case of accidents). The tours designed 

are often used repeatedly during some time, and then new and dissimilar tours are found to 

repeat again for some time, making the dissimilarity issue simpler to handle. 

Emergency situations represent other application for dissimilar paths pursing. However, in 

such cases the dissimilarity is defined to avoid the use of damage paths, resulting in problems 

significantly distinct from the one in study. A major concern within an emergency case is 

related to the uncertainty of road conditions after the disaster (earthquakes, hurricanes, 

chemical explosions, etc.). (Lim & Rhee, 2010), for instance, developed an algorithm to 

provide alternative paths with overlaps among them. 

To sum up, although being more similar to the (𝑘d-VRP), the (RCTVRP) or even the (PVRP) 

the problem in study is significantly different, and, as far as authors’ knowledge, it is also a 

new problem. Its challenge comes from the fact that the similarity is here related with the 

sequences of links traversed, which in turn are harder to identify if compared with a 

dissimilarity based on links to reach nodes, as in VRP cases. For the first time, we present a 

new valid model as well as new models to deal within a matheuristic, which is also a novelty.    
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3. Model for dissimilar mixed arc routing problems  

The model here developed is a generalization of the flow based model for the mixed 

capacitated ARP (MCARP) from (Gouveia, et al., 2010). The problems under study are 

defined on a mixed graph (𝑁, 𝐴′ ∪ 𝐸). Edges in E, characterize narrow two way streets that 

may be served by only one traversal (zigzag services). Arcs in 𝐴′ represent either one way or 

large two way streets that must be served in both directions, in which case the street is 

modeled with two reverse arcs. The vehicle is parked at a depot node, 0 ∈ 𝑁, from where it 

starts/ends and its service is performed by only one crew. The depot is far from the service 

area, and thus no demand arcs are incident into it, and it cannot be used as an intermediate 

node as well. Node set N represents the depot, the street crossings or the dead-end streets. 

Two types of links in 𝐴′ ∪ 𝐸 are distinguished: demand links or tasks, and deadheading links 

(i.e. links that can be traversed without need of service). All tasks may also be deadheaded for 

connectivity purposes.  

The time horizon is here defined as the set of days 𝐻 = {1, 2, 3, 4, 5}. This time horizon is 

divided into several periods per day.  

A vehicle tour is a closed walk starting and ending at the depot and representing the vehicle 

service in a given day, ℎ ∈ 𝐻. In the application, each day all the tasks need to be serviced 

once. A vehicle service is a combination of its tours, one for each ℎ ∈ 𝐻, that are considered 

dissimilar.  

The similarity of two vehicle tours, related to the routine of the services, is defined as the 

percentage of tasks that is served in the same period. The similarity can be avoided by 

imposing a threshold limit. The similarity of a vehicle service, also named as the total 

similarity, is the sum of the similarity of all pairs of vehicle tours it includes. 

We decided to deal with the similarity issue regarding the periods of the day tasks are served. 

Instead, we might have related it with sequences of tasks or use a combination of both, i.e. 

periods and sequences. However, we opt to keep it as simple as possible, so it can be studied 

through a flow base model. 

Each link in a tour can be just traversed (deadheaded) or, in the case of a demand link, it can 

also be served. Each time a link is deadheaded, task or not, a time (or cost) is taken into 

account.  

In what follows, we present the notation used in order to define and model the mixed 

dissimilar arc routing problems here tackled.   
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 G = (𝑁, 𝐴) is a directed graph, derived from (𝑁, 𝐴′ ∪ 𝐸), by replacing each edge in E 

by two arcs with opposite directions, i.e. 𝐴 = 𝐴′ ∪ {(𝑖, 𝑗), (𝑗, 𝑖): (𝑖, 𝑗) ∈ 𝐸} with no 

repetitions. 

 𝑅 ⊆ 𝐴 is the set of arcs in G associated with the tasks, and its cardinality is |𝑅| =

|𝐴𝑅| + 2|𝐸𝑅|, being 𝐴𝑅 and 𝐸𝑅 the set of arc-tasks and edge-tasks, respectively. 

 𝑐𝑎  is the time needed to serve each task 𝑎 = (𝑖, 𝑗) ∈ 𝑅. 

 𝑑𝑎 is the deadheading time, i.e. the time needed to traverse arc 𝑎 = (𝑖, 𝑗) ∈ 𝐴 without 

serving it.  

 𝐻 = {1, 2, 3, 4, 5} is the time horizon that may represent the days in a working week. 

 ℓ is a period index. If we consider one hour periods, we may fix from 9:30 till 12:30 

and from 14:00 to 17:00, three morning and three afternoon collecting periods, 

respectively, numbered from 1 to 6 (ℓ ∈ {1,… ,6} = 𝐿). 

 𝑊 is a large number. 

The problem we are modelling basically consists of finding a group of minimum length 

vehicle tours that are dissimilar in consecutive days. The major differences here included, 

when compared with (Gouveia, et al., 2010) (an adapted version of this model is presented in 

the appendix), are the following: 

1) Variables are defined with an extra index to identify the periods (ℓ), as the days 

(index ℎ) represent different tours and thus are related with the multiple tours in the 

(MCARP) model; 

2) New variables and constraints are needed to define different start and ending points 

per tour to identify the periods; 

3) Usual balance and flow constraints on each node must be carefully written as they 

may be related to a node that will be selected as the starting or the ending node of a 

period;  

4) A minimum number of services per period is imposed to better control the similarity 

measure; 

5) New constraints are added to prevent the similarity of the tours. 

Flow based model 

For each day ℎ ∈ 𝐻 and each period ℓ ∈ 𝐿, we define: 

 𝑥𝑖𝑗
ℓℎ = {

1   if  (𝑖, 𝑗) ∈ 𝑅 is served during period ℓ in day h 

0   otherwise                                                                 
 

 𝑢𝑖
ℓℎ = {

1   if  𝑖 is the ending point of the tour on period ℓ in day h 

0   otherwise                                                                                  
 

 𝑣𝑖
ℓℎ = {

1   if  𝑖 is the starting point of the tour on period ℓ in day h 

0   otherwise                                                                                    
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 𝑦𝑖𝑗
ℓℎ is the number of times that arc (𝑖, 𝑗) ∈ 𝐴 is deadheaded during period ℓ  in day ℎ. 

 𝑓𝑖𝑗
ℓℎ is the flow traversing arc (𝑖, 𝑗) ∈ 𝐴 during period ℓ in day ℎ. It is related to the 

remaining services in the tour, or in a subtour of it. 

The problem to identify a vehicle service in 𝐻, minimizing the total routing time, is next 

detailed. 

 

(M1DAR) 

min 𝑍 = ∑∑(∑𝑑𝑎  𝑦𝑎
𝑙ℎ

𝑎∈𝐴

+∑𝑐𝑎  𝑥𝑎
𝑙ℎ

𝑎∈𝑅

)

ℓ∈𝐿ℎ∈𝐻

                                                                                                                  (1) 

 

∑ 𝑦𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

+ ∑ 𝑥𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝑅

− ∑ 𝑦𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑥𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝑅

= 𝑣𝑖
ℓℎ − 𝑢𝑖

ℓℎ 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (2) 

∑( ∑ 𝑦𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

+ ∑ 𝑥𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝑅

− ∑ 𝑦𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑥𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝑅

)

ℓ∈𝐿

= 0 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻 (3) 

∑( ∑ ∑ 𝑦0𝑗
ℓℎ

𝑗:(0,𝑗)∈𝐴ℓ∈𝐿\{1}

)

ℎ∈𝐻

= 0          ∧       ∑ 𝑦0𝑗
1ℎ

𝑗:(0,𝑗)∈𝐴

= 1,    ℎ ∈ 𝐻  (4) 

∑( ∑ ∑ 𝑦𝑗0
ℓℎ

𝑗:(𝑗,0)∈𝐴ℓ∈𝐿\{|𝐿|}

)

ℎ∈𝐻

= 0           ∧       ∑ 𝑦𝑗0
|𝐿|ℎ

𝑗:(𝑗,0)∈𝐴

= 1,    ℎ ∈ 𝐻  (5) 

∑𝑥𝑖𝑗
ℓℎ

ℓ∈𝐿

= 1 𝑎 = (𝑖, 𝑗) ∈ 𝐴𝑅 ; ℎ ∈ 𝐻 (6) 

∑(𝑥𝑖𝑗
ℓℎ + 𝑥𝑗𝑖

ℓℎ)

ℓ∈𝐿

= 1 𝑎 = (𝑖, 𝑗) ∈ 𝐸𝑅; ℎ ∈ 𝐻 (7) 

∑𝑥𝑎
ℓℎ

𝑎∈𝑅

≥ ⌊
|𝐴𝑅| + |𝐸𝑅|

|𝐿|
⌋ ℓ ∈ 𝐿;   ℎ ∈ 𝐻 (8) 

∑ 𝑓𝑗𝑖
1ℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑓𝑖𝑗
1ℎ

𝑗:(𝑖,𝑗)∈𝐴

= ∑ 𝑥𝑗𝑖
1ℎ

𝑗:(𝑗,𝑖)∈𝑅

 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻 (9) 

∑ 𝑓𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑓𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

≤ ∑ 𝑥𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝑅

+𝑊𝑣𝑖
ℓℎ 𝑖 ∈ 𝑁\{0}; ℓ ∈ 𝐿\{1}; ℎ ∈ 𝐻 (10) 

− ∑ 𝑓𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝐴

+ ∑ 𝑓𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

≤ − ∑ 𝑥𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝑅

+𝑊𝑣𝑖
ℓℎ 𝑖 ∈ 𝑁\{0}; ℓ ∈ 𝐿\{1}; ℎ ∈ 𝐻 (11) 

∑ 𝑓0𝑗
1ℎ

𝑗:(0,𝑗)∈𝐴

= ∑𝑥𝑎
1ℎ

𝑎∈𝑅

 ℎ ∈ 𝐻 (12) 

∑ 𝑓𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

≤ ∑𝑥𝑎
ℓℎ

𝑎∈𝑅

+𝑊(1 − 𝑣𝑖
ℓℎ) 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻;  ℓ ∈ 𝐿\{1} (13) 

− ∑ 𝑓𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

≤ −∑𝑥𝑎
ℓℎ

𝑎∈𝑅

+𝑊(1 − 𝑣𝑖
ℓℎ) 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻;  ℓ ∈ 𝐿\{1} (14) 

𝑞𝑎𝑥𝑎
ℓℎ ≤ 𝑓𝑎

ℓℎ ≤ 𝑊(𝑦𝑎
ℓℎ + 𝑥𝑎

ℓℎ) 𝑎 ∈ 𝑅 ; ℎ ∈ 𝐻;  ℓ ∈ 𝐿 (15) 

𝑓𝑎
ℓℎ ≤ 𝑊∑𝑦𝑎

ℓℎ

ℓ∈𝐿

 𝑎 ∈ 𝐴\𝑅 ; ℎ ∈ 𝐻 (16) 

𝑢𝑖
ℓℎ ≤ ∑ 𝑦𝑗𝑖

ℓℎ

𝑗:(𝑗,𝑖)∈𝐴

+ ∑ 𝑥𝑗𝑖
ℓℎ

𝑗:(𝑗,𝑖)∈𝑅

 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (17) 
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𝑣𝑖
ℓℎ ≤ ∑ 𝑦𝑖𝑗

ℓℎ

𝑗:(𝑖,𝑗)∈𝐴

+ ∑ 𝑥𝑖𝑗
ℓℎ

𝑗:(𝑖,𝑗)∈𝑅

 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (18) 

𝑢𝑖
ℓℎ = 𝑣𝑖

ℓ+1ℎ 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻; ℓ ∈ 𝐿\{|𝐿|} (19) 

∑ 𝑢𝑖
ℓℎ

𝑖∈𝑁\{0}

= 1 ℎ ∈ 𝐻; ℓ ∈ 𝐿\{|𝐿|} (20) 

∑ 𝑣𝑖
ℓℎ

𝑖∈𝑁\{0}

= 1 ℎ ∈ 𝐻; ℓ ∈ 𝐿\{1} (21) 

𝑥𝑖𝑗
ℓℎ + 𝑥𝑖𝑗

ℓℎ+1 ≤ 1 (𝑖, 𝑗) ∈ 𝐴𝑅; ℎ ∈ 𝐻\{|𝐻|}; ℓ ∈ 𝐿 (22) 

𝑥𝑖𝑗
ℓℎ + 𝑥𝑗𝑖

ℓℎ + 𝑥𝑖𝑗
ℓℎ+1 + 𝑥𝑗𝑖

ℓℎ+1 ≤ 1 (𝑖, 𝑗) ∈ 𝐸𝑅  ; ℎ ∈ 𝐻\{|𝐻|};  ℓ ∈ 𝐿 (23) 

𝑥𝑖𝑗
ℓℎ ∈ {0,1} (𝑖, 𝑗) ∈ 𝑅; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (24) 

𝑓𝑖𝑗
ℓℎ ≥ 0 (𝑖, 𝑗) ∈ 𝐴; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (25) 

𝑦𝑖𝑗
ℓℎ ≥ 0,  integer (𝑖, 𝑗) ∈ 𝐴; ℎ ∈ 𝐻; ℓ ∈ 𝐿  (26) 

 

Conditions (2) and (3) imply the continuity of the vehicle tours at each node, considering 

three different types of nodes: starting, ending or intermediate; (4) and (5) fix the depot as the 

starting point of the first period, ℓ = 1, and ending point of the last period, ℓ = |𝐿|, each day; 

the service of each arc and edge, by only one vehicle, is guaranteed by (6) and (7), 

respectively; (8) imposes a minimum number of services per period, needed to balance 

periods to avoid situations as the one illustrated in example 1; (9) are flow conservation 

constraints for the first period, while (10) and (11)  represent these constraints for the 

remaining periods; these, together with the linking constraints (15) and (16) force the 

connectivity of the vehicle tours. Constraints (12)(14) define the flow per period and per 

day; (17) and (18) ensure that the vehicle may use a node as an ending or starting point of a 

period only if it is traversed by the vehicle during the same period; (19) relates the ending of a 

period with the beginning of the next period, each day, while (20) and (21) guarantee that 

only one node may be used as a starting/ending point, per period and per day. Constraints (22) 

and (23) are used to impose the services dissimilarity. Variable domains are settled in (24) 

(26). 

Example 1: consider the network with eight edge tasks and two deadheaded links connecting 

the depot, node 0, depicted in Figure 1. The two feasible tours for two consecutive days, 

starting and ending at the depot, have no minimum services per period imposed and are: 

Day1: {(0,1,2,3,4,5,3,2,5)⏟            
period 1

, (5,6,0)}⏟    
period 2

   Day2:  {(0,6,5)⏟    
period 1

, (5,3,4,5,2,3,2,1,0)}⏟            
period 2

. 

Thus, has no services are repeated during the same period, the tours are considered 

inappropriately dissimilar. However, we may see that tasks (3,4) and (4,5) are served in 

exactly the same order (fourth and fifth). If a minimum number of ⌊
8

4
⌋ = 4 services per period 

is imposed, node 4 will be the ending of period one, and the similarity is detected. 
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Figure 1: effect of no balancing tours. 

Legend: #.P% - # represents the order in the tour and the period %; and the shaded node the node where the first 

period ends. 

 

Although giving rise to an undesirable increase in the number of constraints, we note that (22) 

and (23) may be generalized to consider more than two consecutive days. Without this 

generalization we may get solutions where day ℎ + 2 is a replica of day ℎ, and so on, which 

may represent a model handicap. 

Instead, to bound repetitions in the same period all over the time horizon, we may consider 

the alternative set of constraints: 

∑𝑥𝑎
ℓℎ

ℎ∈𝐻

≤ 𝑀,    𝑎 ∈ 𝑅, ℓ ∈ 𝐿                     (27), 

where 𝑀 ≥ 1, and 𝑀 = 1 if no repetitions are allowed. 

As referred to above, this would be too restrictive. We thus opt to consider the simpler 

version, i.e. including only the constraints that avoid similar tours on two consecutive days. 

More general situations are elaborated through a matheuristic we developed and next detail.  

4. Matheuristic 

Leaving aside, for now, the similarity issue, this matheuristic starts by generating a pool of 

feasible tours. Model (M1DAR) is thus applied considering only one day (ℎ = 1) as well as 

different objective functions. With the pool of feasible solutions three models were developed 

to generate different feasible solutions, regarding the similarity issue. These models aim to 

select |𝐻| tours (the number of days) that may be consider dissimilar so they can be used in a 

real case. The matheuristic is next detailed.   

Matheuristic:  

1. Use model (M1DAR) with ℎ = 1, thus without constraints (22) and (23), to identify several 

feasible tours. Alternative ways to generate the tours. 

Solve (M1DAR) with ℎ = 1 and a time limit of 3h; 

Add to the pool of feasible tours, 𝐹𝑇, feasible solutions provided by CPLEX; 

Repeat 

i. In 𝐹𝑇, fix the service of a task on a period that it is not yet used in the current pool, and 

run once more model (M1DAR) with ℎ = 1, within a three hours cpu time limit; 
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ii. Add to the pool of feasible tours, 𝐹𝑇, all the feasible solutions provided by CPLEX, if 

any; 

Until (all tasks are tried to be serviced in every periods); 

iii. Use different objective functions, as e.g. the minimization of deadheading traversals and 

repeat the above procedure; 

2. Use one of the three models: MRH𝜇; MR𝜇 or MRS, next defined, to identify |H| tours, one per 

day, that: 

i. minimizes the total time to collect safes not repeating a fixing percentage of tasks in 

each pair of tours in two successive days – model MRH𝜇; 

ii. minimizes the total routing time to collect the safes, within a given maximum 

similarity between any pair of tours  – model MR𝜇;  

iii. minimizes the maximum similarity – model MRS.  

 

The three models referred to in step 2 are next defined. 

Let: 𝐹𝑇 be a group of vehicle tours; 𝐶𝑟 be the total routing time of tour 𝑟 ∈ 𝐹𝑇; 𝑆𝑟𝑡 the 

similarity between tours 𝑟 ∈ 𝐹𝑇 and 𝑡 ∈ 𝐹𝑇; and 𝜇 the maximum similarity allowed. 

The similarity index is computed as: 𝑆𝑟𝑡 =

number of tasks served during the  
same period in tours 𝑟 and 𝑡

total number of tasks
        (28).  

Example 2: Let us consider the network with nine edge tasks and two deadheaded links 

connecting the depot, node 0, depicted in Figure 2, and two feasible tours for two 

consecutive days, starting and ending at the depot: 

Day1: {(0,1, 2,3,4̅̅ ̅̅ ̅̅ , 2,5̅̅ ̅̅ )⏟          
period 1

, (5,4̅̅ ̅̅ , 6,5̅̅ ̅̅ , 7,0)}⏟        
period 2

   Day2:  {(0,7, 5,2,3,4̅̅ ̅̅ ̅̅ ̅̅ ̅, 6)⏟          
period 1

, (6,5,4̅̅ ̅̅ ̅̅ , 2,1,0)}⏟        
period 2

. 

These tours repeat the periods for servicing tasks (2,3), (3,4), (2,5), in period 1, and 

tasks (5,4) and (6,5) in period 2. So, the similarity index is  
5

9
. 
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 (a) tour for Day1  (b) tour for Day2 

Figure 2: similarity of two tours. 

Legend: P#.D% represents the period # in day %, and the shaded node the node where the first period ends. 

Model MRH 

The variables are:  

 𝑔𝑟
ℎ = {

1   if 𝑟 ∈ 𝐹𝑇 is selected for day ℎ ∈ 𝐻 
0   otherwise                                             

    

and the model to identify the best vehicle service, i.e. the best tours per time horizon 

minimizing the total routing time is: 
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(MRH𝜇) 

min∑ ∑ 𝐶𝑟 𝑔𝑟
ℎ

𝑟∈𝐹𝑇ℎ∈𝐻

                                                                      (29) 

{
 
 

 
 𝑆𝑟𝑡(𝑔𝑟

ℎ + 𝑔𝑡
ℎ+1 − 1) ≤ 𝜇           𝑟, 𝑡 ∈ 𝐹𝑇,   ℎ ∈ 𝐻\{|𝐻|}              (30)

∑ 𝑔𝑟
ℎ

𝑟∈𝐹𝑇

= 1                                 ℎ ∈ 𝐻                                                 (31)

     𝑔𝑟
ℎ ∈ {0,1}             𝑟 ∈ 𝐹𝑇,   ℎ ∈ 𝐻                                              (32)

 

 

Within the minimization of the total routing time objective (29), the aim is to choose one tour 

per day (31), not allowing tours on two successive days with a similarity index greater than 𝜇 

(30).  

Note that if 𝜇 = 0 the solutions provided with this model can fairly be compared with the 

ones generated by (M1DAR). In fact, both models avoid similar tours not allowing tasks 

services during the same period in two consecutive days. Thus, if (M1DAR) optimal tours are 

in the pool 𝐹𝑇, the optimal values for both models, (MRH0) and (M1DAR), coincide. 

Computational tests are also performed for 𝜇 = 0.1 and for 𝜇 = 0.3, being so less restrictive 

regarding the dissimilarity.  

As before, instead to prevent the assignment of similar tours in only two consecutive days, we 

may consider the extra set of constraints: 

∑𝑆𝑟𝑡(𝑔𝑟
ℎ + 𝑔𝑡

ℎ − 1)

ℎ∈𝐻

≤ 𝛽,    𝑟, 𝑡 ∈ 𝐹𝑇                     (33), 

with 𝛽 a fixed value. 

The total similarity, 𝑇𝑆, of the tours generated with a model can be computed if (28) is 

applied to all the pairs of the chosen tours. Thus, and considering a feasible solution of 

(MRH𝜇), the total similarity is: 

𝑇𝑆 = ∑ ∑ ∑ 𝑆𝑟𝑡  𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇

|𝐻|

𝑘=ℎ+1

|𝐻|−1

ℎ=1

                             (34). 

Next proposition is used to establish the upper bound limits for 𝑇𝑆 in the above model. 

Proposition 1: Any feasible solution of (MRH𝜇) has a total similarity bounded by: 

𝑇𝑆 ≤ {
 
 1 

4
[(1 + 𝜇)|𝐻|2 − 2|𝐻|]                                 if  |𝐻| is even

 
 1 

4
[(1 + 𝜇)|𝐻|2 − 2|𝐻| + 1 − 𝜇]                otherwise      

        (35). 

Proof: Let 𝐻1 and 𝐻2 be subsets of odd and even indexes, respectively. Thus, 𝐻1 and 𝐻2 

define a partition of 𝐻. 

𝑇𝑆 = ∑ ∑ ∑ 𝑆𝑟𝑡  𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇

|𝐻|

𝑘=ℎ+1

|𝐻|−1

ℎ=1

= 



  12/23 

= ∑ ∑ 𝑆𝑟𝑡 𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇ℎ,𝑘∈𝐻1
ℎ<𝑘

+ ∑ ∑ 𝑆𝑟𝑡  𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇ℎ,𝑘∈𝐻2
ℎ<𝑘

+ ∑ ∑ ∑ 𝑆𝑟𝑡  𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇𝑘∈𝐻1ℎ∈𝐻2

 

From constraints (31), at most |𝐻| variables 𝑔𝑟
ℎ are nonzero. Note also that, as similarity 

constraints are only imposed to two consecutive days, not allowing tours with similarities 

greater than 𝜇, the remaining tours worst case have similarity one, 𝑆𝑟𝑡 = 1. Thus,   

𝑇𝑆 ≤ (|𝐻1| − 1)
|𝐻1|

2
+ (|𝐻2| − 1)

|𝐻2|

2
+ 𝜇 |𝐻1||𝐻2|.  

Now, if |𝐻| is odd, |𝐻1| =
|𝐻|+1

2
 and |𝐻2| =

|𝐻|−1

2
; otherwise, |𝐻1| = |𝐻2| =

|𝐻|

2
, and the 

result follows. ■ 

Corollary: Any feasible solution of (M1DAR) has a maximum total similarity given by: 

𝑇𝑆 ≤ {
 
 1 

4
(|𝐻|2 − 2|𝐻|)          if  |𝐻| is even

 
 1 

4
(|𝐻| − 1)2                otherwise      

                           (36). 

Proof: First note that (36) is (35) with 𝜇 = 0, and that the total similarity, 𝑇𝑆, of a feasible 

solution of (M1DAR) can be computed by:  

𝑇𝑆 =
1

|𝐴𝑅 ∪ 𝐸𝑅|
∑ ∑ ∑ ∑ 𝑥𝑎

ℓℎ  𝑥𝑎
ℓ𝑘

𝑎∈𝐴𝑅∪𝐸𝑅ℓ∈𝐿

|𝐻|−2

ℎ=1

|𝐻|

𝑘=ℎ+2

                            (37), 

where, for this purpose, for every edge task 𝑎 = (𝑖, 𝑗) ∈ 𝐸𝑅, 𝑥𝑎
ℓℎ = 𝑥𝑖𝑗

ℓℎ + 𝑥𝑗𝑖
ℓℎ. 

Thus, to prove the corollary it is enough to show that (37) is equivalent to (34) if 𝜇 = 0, 

which, in turn, is equivalent to: 

∑ 𝑆𝑟𝑡 𝑔𝑟
ℎ 𝑔𝑡

𝑘

𝑟,𝑡∈𝐹𝑇

=
1

|𝐴𝑅 ∪ 𝐸𝑅|
∑  [

number of tasks served during the  

same period in tours 𝑟 and 𝑡
]  𝑔𝑟

ℎ 𝑔𝑡
𝑘.

𝑟,𝑡∈𝐹𝑇

       

As 𝜇 = 0, the selection of tours for consecutive days can only consider pairs of tours with no 

tasks served during the same period. Remaining pairs of tours may repeat services in the same 

periods. Thus, the above summation counting the number of tasks served during the same 

period in any pair of selected tours 𝑟 and 𝑡 can be written as: 

∑ 𝑥𝑎
ℓℎ 𝑥𝑎

ℓ𝑘

𝑎∈𝐴𝑅∪𝐸𝑅

,         

since these products of 𝑥-variables assume value one iff task 𝑎 is served in the same period in 

days ℎ (with a corresponding tour, say 𝑟) and 𝑘 (with a corresponding tour, say 𝑡). ■ 

Model MR 

Let now simplify the model, and define the variables without the identification of the days, as:  
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 𝑔𝑟 = {
1   if 𝑟 ∈ 𝐹𝑇 is selected 
0   otherwise                   

    

and the model to generate the best vehicle service, i.e. the best tours minimizing the total 

routing time is: 

(MR𝜇) 

min ∑ 𝐶𝑟 𝑔𝑟
𝑟∈𝐹𝑅

                                                             (38) 

{
 
 

 
 𝑆𝑟𝑡  (𝑔𝑟 + 𝑔𝑡 − 1) ≤ 𝜇          ∀𝑟, 𝑡 ∈ 𝐹𝑇        (39)

∑ 𝑔𝑟
𝑟∈𝐹𝑇

= |𝐻|                                                       (40)

     𝑔𝑟 ∈ {0,1}     ∀𝑟 ∈ 𝐹𝑇                                   (41)

 

Within the minimization of the total routing time objective (38), the aim is to choose as many 

tours as the number of days (40), with a predefined upper bound (𝜇) on the similarity between 

any pair of chosen tours (39).  

Note that, in this model, 𝜇 indicates the maximum percentage of tasks that can be served in 

the same period for any pair of tours in a vehicle service, and not only for two consecutive 

days, as in model (MRH𝜇), 

Observe that in example 2 tours are incompatible for this problem if 𝜇 = 0.3, as in nine tasks, 

no more than three services can repeat the period, and we have five repetitions. 

The total similarity, 𝑇𝑆, of a feasible solution of (MR𝜇) is: 

𝑇𝑆 = ∑ 𝑆𝑟𝑡  𝑔𝑟  𝑔𝑡
𝑟,𝑡∈𝐹𝑇

                             (42) 

Proposition 2: The total similarity of any feasible solution of (MR𝜇) is bounded by:         

𝑇𝑆 ≤ 𝜇 𝐶2
|𝐻|

.  

Proof: Observe that if 𝑔𝑟 = 𝑔𝑡 = 1, then  𝑔𝑟 + 𝑔𝑡 − 1 = 𝑔𝑟  𝑔𝑡 = 1. Otherwise, if 

𝑔𝑟 = 0 or 𝑔𝑡 = 0 then 𝑔𝑟 + 𝑔𝑡 − 1 = 0,−1 and 𝑔𝑟  𝑔𝑡 = 0.  From the definition, in 

(42) we have: 

𝑇𝑆 = ∑ 𝑆𝑟𝑡  𝑔𝑟  𝑔𝑡
𝑟,𝑡∈𝐹𝑇

≤ 𝜇 ∑ 𝑔𝑟  𝑔𝑡
𝑟,𝑡∈𝐹𝑇

  =  ⏟
from (40) exactly
|𝐻| variables 𝑔𝑟
are non zero

 𝜇 𝐶2
|𝐻|.                                ■ 

Model MRS 

To minimize the maximum similarity, defined as variable 𝑆𝑀𝑎𝑥, we solve the following 

model. This model is applied to give us an idea about the values for 𝜇 parameter in (MR𝜇) 

that allow the identification of feasible solutions.   
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(MRS) 

min  𝑆𝑀𝑎𝑥                                                                         (43) 

{
 
 

 
 
𝑆𝑟𝑡  (𝑔𝑟 + 𝑔𝑡 − 1) ≤ 𝑆𝑀𝑎𝑥       ∀𝑟, 𝑡 ∈ 𝐹𝑇       (44)

∑ 𝑔𝑟
𝑟∈𝐹𝑇

= |𝐻|                                                             (45)

     𝑔𝑟 ∈ {0,1}     ∀𝑟 ∈ 𝐹𝑇                                        (46)

    𝑆𝑀𝑎𝑥 ≥ 0                                                               (47)

 

The maximum similarity is defined in (44) through the tours assigned and as a positive 

variable (47). Constraints (45) ensure that are assigned as many tours as the number of days.  

The total similarity, 𝑇𝑆, of a feasible solution of (MRS) can be computed with equation (42). 

 

Proposition 3: The maximum total similarity of any feasible solution of (MRS) is computed 

by: 𝑇𝑆 ≤ 𝐶2
|𝐻|

. 

Proof: As in the last prove, and from the definition in (42) we have: 

𝑇𝑆 = ∑ 𝑆𝑟𝑡  𝑔𝑟  𝑔𝑡
𝑟,𝑡∈𝐹𝑇

 ≤ ⏟
(44)

𝑆𝑀𝑎𝑥 ∑ 𝑔𝑟  𝑔𝑡
𝑟,𝑡∈𝐹𝑇

  =  ⏟

  
from (45) exactly 
|𝐻| variables 𝑔𝑟
are non zero

𝐶2
|𝐻|.                         ■ 

Observe that 𝑆𝑟𝑡 maximum (value one), is achieved whenever tours 𝑟 and 𝑡 every task is 

assigned to the same period. Of course this is true if 𝑟 and 𝑡 represent exactly the same tour, 

but it is far from being the only situation, as two tours may be different and serve all the tasks 

in the same periods.  

5. Computational results 

The proposed models are evaluated over some newly generated instances, as the problems are 

also new. The computational results were obtained using CPLEX 12.6.0.0, with default 

settings, in a computer with 2 AMD Opteron 6172 processors (24 cores) at 2.1GHz and with 

64 GB RAM. A time limit of three hours was established, each time the CPLEX was used. 

When an integer program is being solved and the time limit is reached before an optimal 

solution is proved to be found, CPLEX provides the best bounds that are computed taking into 

account all the live nodes of the branch-and-cut tree. Such bounds are used to evaluate the 

procedures. 

5.1. Data instances 

Twelve instances (ex1 to ex12) were generated to assess the performance of the models, with 

dimensions varying between 11 to 50 nodes and 34 to 129 links. The graphs are based on real 

street networks, while deadheading and service times were randomly generated. The relevant 
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characteristics of these instances are depicted in Table 1. Different number of days are also 

considered, namely, |𝐻| = 3, 4, 5. 

Name |𝑽| |𝐀| |𝑨𝑹| |𝐄| |𝑬𝐑| 
ex1 11 33 11 1 1 
ex2 16 34 14 2 2 
ex3 19 40 18 2 2 
ex4 21 47 19 3 3 
ex5 21 63 21 2 2 
ex6 24 63 25 2 2 
ex7 25 54 24 10 10 
ex8 35 80 35 16 16 
ex9 40 65 45 12 12 

ex10 34 77 29 18 18 
ex11 45 98 42 32 32 
ex12 50 111 66 18 18 

Table 1: characteristics of the instances. 

5.2. Results  

In step 1 of the matheuristic, the number of feasible tours (|𝐹𝑇|) varies between 92 and 1470, 

with computational times (tcpu) varying from 26 seconds to less than 2 hours (see Table 2).  

Instance Matheuristic – step 1 

 |𝑭𝑻|  tcpu (s) 

ex1 96 25.84 

ex2 122 69.30 

ex3 155 130.78 

ex4 92 77.72 

ex5 106 112.05 

ex6 270 334.71 

ex7 434 525.63 

ex8 392 837.75 

ex9 414 925.03 

ex10 590 1458.09 

ex11 1470 6378.74 

ex12 1019 4367.67 
Table 2: feasible tours generation. 

 

Table 3 allows the comparison between the valid model, (M1DAR), and the matheuristic 

using model (MRH𝜇) with 𝜇 = 0, named as (MRH0). As referred to, the similarity is treated 

in the same way in both models, so this is a fair comparison.  

Second to fourth columns in Table 3 display the results for the valid model, (M1DAR), 

namely, the lower (LB) and upper (UB) total routing times provided by CPLEX and the 

computational time (tcpu) in seconds. Values obtained with the matheuristic using model 

(MRH𝜇), with 𝜇 = 0, are in columns five and six. Column five, headed as GapUB0, depict 

gap values comparing upper bounds obtained by both models. Thus, if 𝑈𝐵 and 𝑈𝐵0 are, 

respectively, the upper bounds for models (M1DAR) and (MRH0), 𝑔𝑎𝑝𝑈𝐵0 =
𝑈𝐵0−𝑈𝐵

𝑈𝐵
×

100%. Thus, positive values represent instances for which (M1DAR) provides better bounds, 

while negative values point to a better performance of (MRH0). 
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Most of the times (M1DAR) succeeds in generating an optimal solution. In fact, this is always 

the case whenever |𝐻| = 3, however for higher time horizon values its performance tends to 

decrease (|𝐻| = 4: 8 optimums out of 12; |𝐻| = 5: 7 out of 12). As stressed before, whenever 

(M1DAR) achieves an optimal solution, values in column five represent gap values between 

the heuristic upper bound and the optimum, and thus we may conclude that in 20 out of 36 

instances (MRH0) ends up with an optimal solution. The biggest gap found was 5.2%, and 

(MRH0) got three better solutions than (M1DAR) during its three hours’ cpu time limit. 

Moreover, this occurs for the bigger instances. Note that matheuristic cpu times, usually 

smaller than one minute and never greater than 12 minutes, can be considered reasonable.   
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Instance (M1DAR) 
Matheuristic 

& (MRH0) 

 LB UB tcpu (s) GapUB0 (%) tcpu (s) 
 

|𝑯| = 𝟑  

ex1 519
*
 519

*
 65.23 5.2 0.41 

ex2 2200
*
 2200

*
 44.76 0.0 0.60 

ex3 755
*
 755

*
 6.30 0.0 1.93 

ex4 855
*
 855

*
 10.69 0.0 0.73 

ex5 1161
*
 1161

*
 12.37 0.0 0.88 

ex6 1110
*
 1110

*
 400.41 0.0 5.81 

ex7 13700
*
 13700

*
 708.94 0.0 16.20 

ex8 23148
*
 23148

*
 472.32 0.0 13.88 

ex9 24935
*
 24935

*
 1221.27 0.0 13.94 

ex10 2094
*
 2094

*
 4685.33♦ 3.0 29.72 

ex11 31395
*
 31395

*
 3350.59 0.3 203.39 

ex12 38052
*
 38052

*
 7264.62♦ 0.0 81.78 

 

|𝑯| = 𝟒  

ex1 704
*
 704

*
 830.84 3.7 0.59 

ex2 2940
*
 2940

*
 279.66 0.0 0.94 

ex3 1010
*
 1010

*
 148.07 0.0 4.09 

ex4 1140
*
 1140

*
 47.41 0.0 1.16 

ex5 1548
*
 1548

*
 125.50 0.0 1.32 

ex6 1468.72 𝟏𝟒𝟗𝟎̅̅ ̅̅ ̅̅ ̅ 10800.20 0.0 10.44 

ex7 18310
*
 18310

*
 1090.94 0.0 28.94 

ex8 30864
*
 30864

*
 964.19 0.1 26.44 

ex9 33290
*
 33290

*
 8819.73♦ 0.0 21.65 

ex10 2792 𝟐𝟖𝟑𝟕̅̅ ̅̅ ̅̅ ̅ 10801.20 2.8 58.21 

ex11 41860 𝟒𝟐𝟖𝟔𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅ 10802.10 -1.9 446.47 

ex12 50732.3 𝟓𝟎𝟕𝟔𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅ 10801.60 0.0 124.48 
 

|𝑯| = 𝟓  

ex1 871
*
 871

*
 522.58 4.6 0.85 

ex2 3670
*
 3670

*
 377.74 0.0 1.34 

ex3 1260
*
 1260

*
 883.27 0.0 4.37 

ex4 1425
*
 1425

*
 211.24 0.0 1.77 

ex5 1935
*
 1935

*
 16.37 0.0 1.79 

ex6 1827.97 𝟏𝟖𝟓𝟓̅̅ ̅̅ ̅̅ ̅ 10801.10 0.0 13.48 

ex7 22855
*
 22855

*
 1793.69 0.0 40.29 

ex8 38580
*
 38580

*
 2450.29 0.1 43.25 

ex9 41521 𝟒𝟏𝟓𝟖𝟎̅̅ ̅̅ ̅̅ ̅̅ ̅ 10803.30 0.0 30.06 

ex10 3490 𝟑𝟓𝟓𝟓̅̅ ̅̅ ̅̅ ̅ 10808.10 1.7 76.24 

ex11 52325 𝟓𝟖𝟗𝟏𝟕̅̅ ̅̅ ̅̅ ̅̅ ̅ 10812.70 -10.9 677.54 

ex12 63364.6 𝟔𝟔𝟏𝟕𝟓̅̅ ̅̅ ̅̅ ̅̅ ̅ 10802.30 -4.2 175.52 
Table 3: computational results - (M1DAR) vs matheuristic with (MRH0).  

Legend: * indicates the optimum; ♦ the optimum was reached in more than one hour of cpu time. 

 

Henceforward, and for simplicity, model (MRH𝜇) for 𝜇 = 0;  0.1;  0.3 is referred to as 

(MRH0), (MRH0.1) and (MRH0.3), respectively. Correspondent columns in the tables are 

headed by 𝜇_0, 𝜇_0.1 and 𝜇_0.3. In relation to model (MR𝜇), results are presented for only 

μ = 0.3, named as (MR0.3), with columns headed by μ_0.3.  

Next, we compare the performance of the models used within the matheuristic, to select a 

vehicle service from the pool generated, 𝐹𝑇. As referred to, (MRS) was used to compute 

𝜇=0.3 as the minimum value of 𝜇 to be applied in (MR𝜇). In fact, for smaller values no vehicle 

services can be found from the pool for too many instances (with 𝜇 = 0.3 only instances ex3 
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and ex4 fail for |𝐻|=5). Although it is assumed that an adequate way to deal with this real 

application is to limit the total similarity and then to minimise the routing time, it would be 

interesting to observe the total and the maximum similarities in the solutions obtained.  

The bound on the total maximum similarity computed through propositions 1-3 is given in 

Table 4. Although not detailed in the tables, from the computational results we observed that 

while model (MRH0) almost always meet its maximum values, (MRH0.1) and (MRH0.3) are 

about 90% of its maximum, and (MR0.3) about 80%. We also noticed that the most frequent 

value regarding the maximum similarities of the feasible solutions for models (MRH𝜇) is one 

(the maximum), while (MR𝜇) is always close to 30%, which is its limit. Thus, models 

produce feasible solutions, within, as it is imposed, the upper similarity limits, and also very 

close to it.  

 TS upper bounb 

 (MRH𝜇) (MR𝜇) 𝐶2
|𝐻|  

|𝑯|  μ_0  μ_0.1  μ_0.3 μ_0.3   
|𝑯| = 𝟑 1 1.2 1.6 0.9 3 
|𝑯| = 𝟒 2 2.4 3.2 1.8 6 
|𝑯| = 𝟓 4 4.6 5.8 3.0 10 

Table 4: upper bounds on TS values. 

 

Table 5 depicts total routing time gap values for the matheuristic using models (MRH0), 

(MRH0.1), (MRH0.3) and (MR0.3) in columns two to five. Each instance bounds are 

computed against the better value. Thus, if  𝑅𝑇∗ is the lowest routing time value for an 

instance (i.e. the better upper bound) the percentage gap for model (MR#) that generates a 

feasible solution with a total routing time equal to 𝑅𝑇# is 𝑔𝑎𝑝(𝑀𝑅#) =
𝑅𝑇#−𝑅𝑇∗

𝑅𝑇∗
× 100%. 

Then, lines ending each group (for |𝐻| = 3,4,5) display minimum, average and maximum gap 

values to summarize the information. 

As can be observed, more restrictive models regarding similarity do not deteriorate to much 

the total routing time. In fact, models (MRH0) and (MRH0.1) routing time gap values vary 

between 0% and 9.3%, being, as expected, (MRH0.3) the better one. Model (MR0.3) 

sometimes fails or generate feasible vehicle services with very high total routing time. This 

results from the fact that 𝜇 = 0.3, is the lowest value of the parameter that (MR𝜇) can handle, 

and probably 𝐹𝑇 includes only one group of |𝐻| tours that meet the similarity requirement, 

for  smaller instances. However, for the bigger instances, its performance is quite good. 
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Routing time (MRH𝜇) (MR𝜇) 

Instance μ_0  μ_0.1  μ_0.3 μ_0.3  
 

|𝑯| = 𝟑  
ex1 9.0 2.8 0.0 6.0 

ex2 0.5 0.5 0.0 0.5 

ex3 0.7 0.7 0.0 0.0 

ex4 0.0 0.0 0.0 0.0 

ex5 0.0 0.0 0.0 0.0 

ex6 1.4 1.4 0.0 0.0 

ex7 0.5 0.3 0.0 0.3 

ex8 0.0 0.0 0.0 0.0 

ex9 0.3 0.0 0.0 0.0 

ex10 3.0 0.0 0.0 0.0 

ex11 0.3 0.0 0.0 0.0 

ex12 0.0 0.0 0.0 0.0 

Min 0.0 0.0 0.0 0.0 

Average 1.4 0.5 0.0 0.6 

Max 9.0 2.8 0.0 6.0 
 

|𝑯| = 𝟒  
ex1 9.3 4.2 0.0 12.1 

ex2 0.7 0.7 0.0 0.7 

ex3 1.0 1.0 0.0 0.5 

ex4 0.0 0.0 0.0 0.0 

ex5 0.0 0.0 0.0 0.7 

ex6 2.1 2.1 0.0 2.1 

ex7 0.7 0.4 0.0 0.6 

ex8 0.1 0.0 0.0 0.0 

ex9 0.4 0.0 0.0 0.2 

ex10 4.4 0.0 0.0 0.5 

ex11 0.4 0.0 0.0 0.0 

ex12 0.0 0.0 0.0 0.0 

Min 0.0 0.0 0.0 0.0 

Average 1.7 0.7 0.0 1.4 

Max 9.3 4.2 0.0 12.1 
 

|𝑯| = 𝟓  
ex1 9.1 3.4 0.0 7458.0 

ex2 0.5 0.5 0.0 2663.7 

ex3 0.8 0.8 0.0 0.8 

ex4 0.0 0.0 0.0 - 

ex5 0.0 0.0 0.0 - 

ex6 1.6 1.6 0.0 15.1 

ex7 0.6 0.3 0.0 0.7 

ex8 0.1 0.0 0.0 0.1 

ex9 0.3 0.0 0.0 0.3 

ex10 3.6 0.0 0.0 1.8 

ex11 0.3 0.0 0.0 0.0 

ex12 0.0 0.0 0.0 0.0 

Min 0.0 0.0 0.0 0.1 

Average 1.5 0.6 0.0 1014.0 

Max 9.1 3.4 0.0 7458.0 
Table 5: total routing times comparing (MRH𝜇) and (MR𝜇). 

 

Average, minimum and maximum values for the computational times (in seconds) referring to 

models (MRH𝜇) and (MR𝜇) may be consulted in Table 6. These values are considered small 

as they vary between 0 and 900 seconds (15 minutes). 
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tcpu (MRH𝜇) (MR𝜇) 

 μ_0  μ_0.1  μ_0.3  μ_0.3   
|𝑯| = 𝟑  

Min 0.41 0.27 0.22 0.02 

Average 30.77 53.73 60.58 1.73 

Max  203.39 344.50 385.48 11.33 
|𝑯| = 𝟒  

Min 0.59 0.42 0.31 0.02 

Average 60.39 86.10 97.03 1.54 

Max  446.47 536.51 650.25 9.37 
|𝑯| = 𝟓  

Min 0.85 0.58 0.45 0.02 

Average 88.88 117.20 135.14 1.68 

Max  677.54 734.49 894.37 11.21 

Table 6: execution times comparing (MRH𝜇), (MR𝜇) and (MRS). 

 

To sum up, for smaller instances the valid model (M1DAR) seems to be the best option. On 

the other hand, (MR0.3) seems to be a good option for larger instances, as having a maximum 

similarity for all pairs of tours controlled, its routing times are close to the better ones.  

6.  Final Remarks 

In this work we present a new problem named DARP, Dissimilar Arc Routing Problem. It 

arises in one application where service is to be performed on arcs, every day of a time 

horizon, and similar tours should be avoided to prevent robberies.  

We propose a definition of similarity between two tours based on the number of tasks that are 

visited by both tours in the same time periods of the day. Constraints can be used to prevent 

the selection of similar tours. A measure is also proposed to evaluate the total similarity of a 

group of tours. 

An integer programing formulation is presented for DARP and the computational results 

show CPLEX is able to solve small sized instances. To deal with larger instances a 

matheuristic is developed. Framed on the matheuristic, different constraints to avoid 

similarity of tours were essayed and evaluated. One of the alternatives tested, (MR0.3), 

displayed a better balance for total routing time and total similarity, and it is not very 

demanding in terms of cpu time. 

Topics for future research include several vehicles with a fixed capacity, different tasks 

demand for service in different days with distinct periodicities, as well as a further study on 

constraints to avoid similarities.  
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Appendix: Flow based MCARP model 

Adapting (Gouveia, et al., 2010), we may consider all tasks with unitary demands, a null 

dump cost, and each vehicle as a day that is used, and so for each day ℎ ∈ 𝐻: 

 𝑥𝑖𝑗
ℎ = {

1   if  (𝑖, 𝑗) ∈ 𝑅 is served in day h 

0   otherwise                                   
 

 𝑦𝑖𝑗
ℎ  is the number of times that arc (𝑖, 𝑗) ∈ 𝐴 is deadheaded during day ℎ. 

 𝑓𝑖𝑗
ℎ is the flow traversing arc (𝑖, 𝑗) ∈ 𝐴 in day ℎ. It is related to the remaining 

services in the tour, or in a subtour of it. 

The problem to identify a vehicle service in 𝐻, minimizing the total routing time, is next 

detailed. 

 

(MCARP) 

min 𝑍 = ∑(∑𝑑𝑎  𝑦𝑎
ℎ

𝑎∈𝐴

+∑𝑐𝑎  𝑥𝑎
ℎ

𝑎∈𝑅

)

ℎ∈𝐻

                                                                                                                  (48) 

 

∑ 𝑦𝑖𝑗
ℎ

𝑗:(𝑖,𝑗)∈𝐴

+ ∑ 𝑥𝑖𝑗
ℎ

𝑗:(𝑖,𝑗)∈𝑅

− ∑ 𝑦𝑗𝑖
ℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑥𝑗𝑖
ℎ

𝑗:(𝑗,𝑖)∈𝑅

= 0 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻 (49) 

   ∑ 𝑦0𝑗
ℎ

𝑗:(0,𝑗)∈𝐴

= 1     ℎ ∈ 𝐻 (50) 

∑𝑥𝑖𝑗
ℎ

ℎ∈𝐻

= 1 𝑎 = (𝑖, 𝑗) ∈ 𝐴𝑅  (51) 

∑(𝑥𝑖𝑗
ℎ + 𝑥𝑗𝑖

ℎ)

ℎ∈𝐻

= 1 𝑎 = (𝑖, 𝑗) ∈ 𝐸𝑅 (52) 

∑ 𝑓𝑗𝑖
ℎ

𝑗:(𝑗,𝑖)∈𝐴

− ∑ 𝑓𝑖𝑗
ℎ

𝑗:(𝑖,𝑗)∈𝐴

= ∑ 𝑥𝑗𝑖
ℎ

𝑗:(𝑗,𝑖)∈𝑅

 𝑖 ∈ 𝑁\{0}; ℎ ∈ 𝐻 (53) 

∑ 𝑓0𝑗
ℎ

𝑗:(0,𝑗)∈𝐴

= ∑𝑥𝑎
ℎ

𝑎∈𝑅

 ℎ ∈ 𝐻 (54) 

𝑥𝑎
ℎ ≤ 𝑓𝑎

ℎ ≤ 𝑊(𝑦𝑎
ℎ + 𝑥𝑎

ℎ) 𝑎 ∈ 𝑅 ; ℎ ∈ 𝐻;  ℓ ∈ 𝐿 (55) 

𝑓𝑎
ℎ ≤ 𝑊𝑦𝑎

ℎ 𝑎 ∈ 𝐴\𝑅 ; ℎ ∈ 𝐻 (56) 

𝑥𝑖𝑗
ℎ ∈ {0,1} (𝑖, 𝑗) ∈ 𝑅; ℎ ∈ 𝐻; ℓ ∈ 𝐿 (57) 

𝑓𝑖𝑗
ℎ ≥ 0 (𝑖, 𝑗) ∈ 𝐴; ℎ ∈ 𝐻 (58) 

𝑦𝑖𝑗
ℎ ≥ 0,  integer (𝑖, 𝑗) ∈ 𝐴; ℎ ∈ 𝐻; ℓ ∈ 𝐿  (59) 

 

 

 

 

 


