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ABSTRACT. This paper deals with a novel hydraulic fracture model based on the concept
of topological derivative. The basic idea consists in adapting the Francfort-Marigo dam-
age model to the context of hydraulic fracture. The Francfort-Marigo damage model is a
variational approach to describe the behavior of brittle materials under the quasi-static
loading assumption, focusing on the evolution of damage regions under an irreversibility
constraint. In our problem, the loading comes out from a prescribed pressure acting
within the damage region, which is used to trigger the hydraulic fracturing process. A
shape functional given by the sum of the total potential energy of the system with a
Griffith-type dissipation energy term is minimized with respect to a set of ball-shaped
pressurized inclusions by using the topological derivative concept. In particular, the
topological asymptotic expansion of the shape functional with respect to the nucleation
of a circular inclusion endowed with non-homogeneous transmission condition on its
boundary is rigorously developed. The associated topological derivative, which corrobo-
rates with the famous Eshelby theorem, is used to devise a simple topology optimization
algorithm specifically designed to simulate the whole nucleation and propagation process
of hydraulic fracturing. To assess our model, some numerical examples are presented,
showing typical features of hydraulic fracture phenomenon, including the characteriza-
tion of the fault-activation pressure and specific crack path growth, allowing for kinking
and bifurcations.

1. INTRODUCTION

Hydraulic fracturing is an industrial process that requires to pump a mixture of water,
proppant (usually sand), and some chemical additives into layers of rock and shale. The
purpose is to create and/or extend cracks from some pre-existing geological faults in
order to let the gas that was trapped into the rocks be extracted at the surface. Roughly
speaking, the process starts by perforating a vertical well into the reservoir. As soon as the
required depth is reached, the perforation continues in the horizontal direction. Finally,
the pumping mechanism of the aforementioned mixture at an extremely high pressure is
launched. Then, the pressure inside the damaged region is increased until a critical value
is attained at which fault-activation is triggered.

In order to study the hydraulic fracturing process, we consider an idealized reservoir
composed by the horizontal pressurization well within the region to be fractured. It is
supposed that the fracture pattern is periodic. Therefore, adopting convenient boundary
conditions, it is sufficient to consider a single block as reference domain to represent the
whole fracture network. See sketch in Figure 1.

In particular, this paper deals with a novel hydraulic fracture model based on the
topological derivative concept. The basic idea consists in adapting the Francfort-Marigo
damage model [8] to the context of hydraulic fracturing phenomenon. The Francfort-
Marigo damage model describes the behavior of brittle materials under the quasi-static
loading assumption, focusing on the evolution of damage regions under an irreversibility
constraint. Such a model has been successfully applied to simulate fracturing process in
brittle materials, where the crack is identified with a thin damage [4, 5]. See also recent
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FIGURE 1. Fractured reservoir.

papers [1, 18] where the topological derivative concept is incorporated to the Francfort-
Marigo model. In the context of the problem we are dealing with, the loading comes
out from a prescribed pressure inside the damaged region, which is used to trigger the
hydraulic fracturing process. Thus, a shape functional given by the sum of the total
potential energy of the system with a Griffith-type dissipation energy term is minimized
with respect to a set of ball-shaped pressurized inclusions by using the topological de-
rivative concept [14, 16]. More precisely, the topological asymptotic expansion of the
shape functional, taking into account the nucleation of a circular inclusion endowed with
non-homogeneous transmission condition on its boundary, is rigorously developed. It is
observed that the obtained topological derivative fits the famous Eshelby theorem [6, 7]
which represents one of the major advances in the continuum mechanics theory of the
20" century [11]. The associated topological derivative is used as descent direction to
minimize the proposed shape functional indicating the regions that have to be damaged.
Based on this natural idea, a simple topology optimization algorithm specifically designed
to simulate the whole nucleation and propagation hydraulic fracturing process is devised.
Finally, some numerical examples are presented, showing important features associated
with hydraulic fracture phenomenon, including the characterization of the fault-activation
pressure and crack path growth, allowing for kinking and bifurcations.

The hydraulic fracturing process is nowadays very much debated, since in its current
form it is extremely damageable for the ecosystem. In particular, it is currently forbidden
in Europe and many regions of the world, including Brazil, since an uncontrolled use
of this technique leads to severe environmental issues. The first is water consumption:
in 2010, the U.S. Environmental Protection Agency estimated that 300 to 500 million
cubic meters of water are used to fracture 35.000 wells in the United States each year.
The extraction of so much water for fracking has raised concerns about the ecological
impacts to aquatic resources, as well as dewatering of drinking water aquifers. A second
dramatic issue is the fact that shale gas wells can use more than 2 million kilograms of
proppant per well, that is, about 5 times more than alternative oil extraction techniques.
Furthermore, in addition to large volumes of water, a variety of chemicals are used in
hydraulic fracturing fluids, typically of the order of 0.5% and 2.0% of the total volume of
the fracturing fluid, which represents huge quantities in respect of the enormous volume
of water used'.

Isee https://www.earthworksaction.org/issues/detail /hydraulic_fracturing_101#. WRIuRDeltpg
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It is therefore of major importance to be able to numerically simulate any such shale
gas extraction technique, in order to anticipate the risks, monitorate and optimize the
industrial process. Many models have been proposed over the years but they are either
too simplified or they tend to focus on one key aspect of fracking (see, e.g. the survey
[10]). Moreover, the scarcity of in-situ data makes the study of fracking even more compli-
cated. To the knowledge of the authors, alternative approaches rely on nonlinear fracture
mechanics models, with ad-hoc nucleation and propagation laws, as documented in [10].
See also [19]. Therefore, our approach which is linear an purely variational shows the
advantage of being simple and easily implemented, as well as grounded by solid math-
ematical basis. Our aim is also to provide some benchmarks to allow comparison with
other methods, since very few numerical data is currently available.

The paper is organized as follows. The hydraulic fracture mechanical model is pre-
sented in Section 2. The existence of the associated topological derivative is proved in
Section 3, where its closed form is rigorously derived. In Section 4 the resulting topology
optimization algorithm is presented in details. A set of numerical experiments are driven
in Section 5. Finally, some concluding remarks are presented in Section 6.

2. HYDRAULIC FRACTURE MODEL

In this section we present the main aspects concerning Francfort-Marigo damage model
together with its adapted version to the context of hydraulic fracture phenomenon.

2.1. Francfort-Marigo damage model. Damage models, like the one introduced by
Francfort-Marigo, initially propose that a damaged elastic body is composed by two dis-
tinct materials. To introduce this idea, let us consider an open and bounded domain
Q) C R? with Lipschitz boundary 92 and a sub-domain w of the form w C €, see Figure
2. Then, a parameter p, defined as

o052

F1GURE 2. Unperturbed problem.

1, ifzeQ\w,
po, ifzr € w,

p=pl) = {

with 0 < py < 1, is introduced to characterize the damage distribution. Therefore, the
region )\ @ represents the healthy part of the domain, while w represents the damaged
region.

The change from the original material to the damaged one occurs only if the elastic
energy released by this transition overcomes a certain material-dependent threshold. In

(2.1)
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other words, the occurrence of new damage is determined by the relation

1 1
~Ce-e = -pCe-e>k, (2.2)
2 2
where C is the fourth-order elasticity tensor, € is the second-order strain tensor and & is
a material property that represents the damage toughness.
Finally, the model proposes a shape functional, F,(u;), to be minimized at each time

step t;, defined as
Fo(ui) = T (ui) + rlwl, (2.3)

where u; is the displacement field at the time ¢; and |w| is the Lebesgue measure of w. As
mentioned, the first term on the right side of (2.3) represents the total potential energy
of the system while the second term is the so called Griffith-type dissipation energy.

In addition, two conditions are assumed in this model. The first one considers that the
healthy material should be stiffer than the damaged phase to characterize the stiffness
loss associated to the crack growth. The second condition ensures that the fracturing
process is irreversible, which means that healing is precluded. For a complete description
of the Francfort-Marigo damage model see the original paper [§].

2.2. Mechanical model for hydraulic fracture. Now, in order to adapt the Francfort-
Marigo model to the context of hydraulic fracture it is considered that the damaged region
w is submitted to some internal pressure. By this way, a normal force is applied on the
damage front dw. In addition, the pressure inside the damaged region w, depending on
the time instant ¢;, is given by

pi=pi-1+ Ap; (2.4)

where Ap; is the pressure increment. Therefore, the total applied pressure p is computed
as the sum

N
P=Dpo+t Z Ap; (2.5)
i=1
where pg is the initial pressure and N the total number of increments. Note that for each
incremental pressure p; a new displacement field w; is induced. Then, in order to simplify
future notations the subscript ¢ in the displacement field u; will be omitted.
Therefore, the hydraulic fracture model has the same structure of Francfort-Marigo
model and, in particular, relies on the following shape functional:

Folu) = T (u) + klwl, (2.6)
where the total potential energy J(u) is given by
1
J(u) = 3 / o(u) - Vu'dr — /pi div(u)dz. (2.7)
Q w

where p; is the current pressure assumed to be constant in w C 2. The vector function u
is solution to the following variational problem: Find u € U, such that

/ch(u) -Vnidr = /pi div(n)dx, Vn € V. (2.8)

w
Some terms in the above variational equation require explanation. The stress tensor
o(yp) is given by
o(p) = pCV¢” (2.9)
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where the parameter p is given by (2.1). We consider isotropic material, so that the
elasticity tensor C can be represented by the Lamé’s coefficients 1 and A in the following
form:

C=2ul+MNI®I), (2.10)
where I and I are the second and fourth order identity tensors, respectively. The strain
tensor V* is given by the symmetric part of the gradient of ¢, namely

1
Vo' = (Ve + (Vo)) (211)
The set U and the space V' are defined as:
Vi=U = H;(Q). (2.12)

The strong formulation associated with the variational problem (2.8) is given by: Find u,
such that:

dive(u) = 0 in €
ou) = pCVu?,
u = 0 on 01, (2.13)
[u] = 0
[o@ln = —pn f %

where the operator [¢] is used to denote the jump of the function ¢ on the interface dw,
namely [¢] = ¢, — |, on dw. The transmission condition on the interface dw comes out
from the variational formulation (2.8).

As can be seen, the hydraulic fracture model is a simple extension of the Francfort-
Marigo damage model. Thus, the damage evolution is based just on the energy density
distribution. One well-known limitation is that this kind of models are not able to dis-
tinguish between traction and compression stress states, so that some phenomena, such
as crack closure or lips interpenetration for example, cannot be captured. However the
mechanism of hydraulic fracturing is such that these drawbacks do not apply, being the
crack opening purely of traction-type, i.e., the crack faces are forced to move away.

Remark 1. Note that, from the superposition principle, the actions of body forces and the
pressure can be treated separately. In the present work we are focusing on the influence
of the internal pressure only. In other words, in this work we are considering the main
technical problem out of the complete hydraulic fracturing process.

2.3. Statement of the optimization problem. The minimization problem we are
dealing with can be defined in the following way: for each time increment ¢;,

Minirgize F.(u), subject to (2.8), (2.14)
wC

where F,(u) is given by (2.6).

A natural approach to deal with such a minimization problem consists in appealing to
the topological derivative concept. The basic idea consists in evaluating the topological
derivative of the shape functional (2.6) with respect to the nucleation of a small circular
pressurized inclusion. Then, the associated topological derivative can be used as a descent
direction to solve the minimization problem (2.14) indicating, at each iteration, the regions
that have to be damaged.

In the context of hydraulic fracture, the fault-activation pressure is the specific value of
the pressure at which activation of the geological fault takes place. An important feature
associated with the proposed hydraulic fracture model concerns the characterization of
such a critical pressure. The difficulty to deal with problems with stress singularities by
using Francfort-Marigo’s model is that the strain energy density rises locally to unbounded
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values at the crack tip and consequently above any finite threshold. Nevertheless, exper-
iments like those of Griffith indicate the existence of a critical nonzero load even in the
presence of such singularities, which reveals a limitation on the straightforward applica-
tion of the Francfort-Marigo’s model in these cases. Note that in the case of damage
this singularity is not observed. As a matter of fact, the same difficulty is observed to
characterize the critical pressure in the context of hydraulic fracture phenomenon. In
this sense, it is necessary to verify by some numerical strategy if the hydraulic fracture
model permits the characterization of such a critical pressure. There exists some remedies
available in the literature to bypass this problem, see for instance [1]. We are adopting
here the same strategy proposed in [18]. The idea consists in introducing a new material
property kg used together with a scaling factor given by the width 0 of the initial damage.
In particular, we replace xk by a modified energy release parameter ks defined as

K=FKs'=—. (2.15)

From the physical point of view, when § becomes smaller, the parameter k5 increases in a
similar way as the energy density, so that the critical pressure converges to a finite nonzero
value. This strategy has shown to be effective in problems of crack propagation where the
fracture is represented by a damaged region of small width 4, since letting § — 0 forces
the damage region to be crack-like.

Remark 2. In the original Bourdin, Francfort and Marigo work [5], the crack was ap-
prozimated by a smeared region by Ambrosio and Tortorelli functional [2], whereas in our
model the contrary is done: a damage converges to a crack. In the anti-plane case the-
oretical results in this respect were derived by Dal Maso and Iurlano [13]. Note the use
of ks is explicitly taken into account in these approrimations. See also [12], where a phe-
nomenological continuum model for mode III dynamic fracture based on the phase-field
approach s proposed.

3. TOPOLOGICAL SENSITIVITY ANALYSIS

The topological sensitivity analysis provides a scalar field, called topological deriva-
tive, that represents the first order correction of the topological asymptotic expansion of
a given shape functional with respect to the introduction of infinitesimal perturbations
such as holes, inclusions, source terms or cracks. In other words, the topological deriva-
tive measures the sensitivity of the shape functional with respect to the introduction of
topological perturbation.

Let us consider an open and bounded domain  C R? with a Lipschitz boundary
092, which is subject to a nonsmooth perturbation confined in a small region B.(Z) of
size € centered at an arbitrary point £ € ), as sketched in Figure 3. We introduce
a characteristic function z — x(z), r € R?, associated with the unperturbed domain,
namely y = 1g, such that:

o= [ s, (3.1)

where (2] is the Lebesgue’s measure of Q2. Then, we define a characteristic function as-
sociated with the topologically perturbed domain of the form x — x.(Z;x), v € R% In
the case of a perforation, for example, x.(Z) = 1g — 1p.(z), the perforated domain is

obtained as Q.(z) = Q\ B.(Z). Then, we assume that a given shape functional 1 (x.(Z)),
associated with the topologically perturbed domain, admits the following topological as-
ymptotic expansion:

b(X=(2)) = ¥ (x) + f(e) Dry(2) + o(f(€)), (3.2)
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where 1(x) is the shape functional associated to the original domain, that is, without
perturbation, f(e) is a positive function such that f(¢) — 0 when ¢ — 0 and o(f(¢)) is
the remainder. The function z +— Dy (%) is called the topological derivative of ¢ at Z.
Therefore, this derivative can be seen as a first order correction of ¢(x.(z)). In fact, after
rearranging (3.2) we have

Pxe(E) — P(x)
f(e)
The limit ¢ — 0 in the above expression leads to the general definition for the topological
derivative, namely

_ Do)+ 2YE). (3.3)

Y(x:(2)) — ¥(x(x))
f(e)

It is worth to mention that the topological derivative is defined by a limit passage when

the small parameter governing the size of the topological perturbation goes to zero in

(3.4). However, it can also be used as a steepest-descent direction in an optimization
process like in any method based on the gradient of the cost functional.

= =
B.(7)

F1GURE 3. The topological derivative concept.

Dri(#) = lim (3.4)

3.1. Perturbed problem. Now, let us introduce the topologically perturbed problem
associated to the hydraulic fracture model. The idea consists in nucleating a circular
inclusion, denoted by B.(z), of radius € and center at the arbitrary point z € €, such

that B.(z) C Q. We assume that B.(z) is submitted to a pressure load, which leads to
a non-homogeneous transmission condition on the interface 0B.(Z). See sketch in Figure
4. Tn this case x.(%) is defined as follows:

Xe(Z) = 1o — (1 =) 1B ), (3.5)

where v = ~y(x) is the contrast in the material properties. From these elements, we define
a piecewise constant function of the form

Ve = '7e<x) = {
The shape functional associated with the topologically perturbed problem is given by

Foo(ue) = jxs(us) + Klwel, (3.7)

where w, = wU B, with wN B. = (0. The total potential energy of the perturbed system,
Ty (uz), is given by

Ty (u) = %/Qag(ug) -Vuldr — /p,- div(u.)dx —/ pi div(ue)dz, (3.8)

£

1 ifxeQ\ B,

v ifz € B.. (3.6)
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with the vector function u. solution of the following variational problem: Find u. € U,
such that

/ o-(ue) - Vnide = /pi div(n)dzx +/ pidiv(n)dz, Vn € V, (3.9)
Q w €
where the Cauchy stress tensor o.(u.) = v.0(u.) with 7. given by (3.6).

The strong formulation associated with the variational problem (3.9) is given by: Find
Ug, such that:

( divo.(u.) = 0 noQ
o-(us) = veo(ue),
ue = 0 on 01,
) [[Us(us[[)qﬁs’r]l z gpin on Ow. (3.10)
[[us = 0
on 0B..
\ [[Jf(uf)ﬂn = —pin

Again, the transmission conditions on the interfaces dw and 0B; stem from the variational
formulation (3.9).

o

FIGURE 4. Perturbed problem.

3.2. Existence of the topological derivative. The existence of the associated topo-
logical derivative is ensured by the following result:

Lemma 3. Let u. and u be solutions of problems (3.9) and (2.8), respectively. Then, the
following estimate holds true:

[ue — ull (o) < Cé, (3.11)
where C is a constant independent of the small parameter ¢.

Proof. Let us subtract (2.8) from (3.9). Then, from the definition for the contrast (3.6),
we obtain

| wdivtnyas = / (02(u2) — o(u)) - Vida
N / (olue) = olu) - Vi + / (yo(ue) —o(u)) - Vn'da.
Q\B.

£



After adding and subtracting the term

/ vyo(u) - Vn'dx

€

in the above expression we have:
/ pi div(n)dz = / o-(ue —u) - Vnidr + / (v —1Do(u) - Vnide. (3.12)
€ Q €

By taking = u. — u as test function in (3.12) we obtain the following equality:

/g;aa(ug — ) V(ue —u)'de = / (1= 7)o (u) - V(u. — u)dz +/ pi div(u. — u)dz.

5 5

From the above expression, we have

/ o(ue —u) - V(ue —u)’de = / T(u) - V(ue — u)’de, (3.13)
Q

€

where we have introduced the notation
T(u) = (1 —7)o(u) + pil. (3.14)
From Cauchy-Schwartz inequality it follows that

[ ot =) Vi = wide <T@l e = )l ga
Q

< coel|V(ue — u)l[r2s.)
< cellus — ul|l g (3.15)
From the coercivity of the bilinear form on the left-hand side of (3.15) we have
cllue — u||§{1(9) < / o-(ue —u) - V(ue — u)’de, (3.16)
Q

which leads to the result with C' = ¢; /¢ independent of the small parameter ¢. t

3.3. Computation of the topological derivative. In order to evaluate the difference
between the functionals J (u) and J,_(u.), respectively defined in (2.7) and (3.8), we start
by taking 7 = u. — u as test function in the variational problem (2.8). Then we have the
following equality

/Q o(u) - Vu'ds — /Q o(u) - Vuide — / pi div(u. — u)dz. (3.17)

w

After replacing (3.17) into (2.7) we obtain

T(u) = % /Q o(u) - Vude — % / pi div(u. + u)da. (3.18)

In the same way, let us set 7 = u. — u as test function in the variational problem (3.9).
Thus

/ o-(ue) - Vuide = / o-(ue) - Vu'de
Q Q

+ /p,; div(ue —u)dz + [ p;div(u. —u)dz. (3.19)

Be
After replacing (3.19) into (3.8), it follows

Ty (u) = %/Qaa(ug) -Vu'dr — %/p, div(u. + u)dr —

w

1
= | pidiv(ue +u)dr. (3.20)
2 B

€
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From (3.18) and (3.20), the variation of the energy shape functionals can be written as

Fulud) =T =5 [ otw)- Vude = 5 [ ol Vutds

Q

1
_5/ p; div(ue + u)dz. (3.21)

5

Now, by taking into account the definition for the contrast . given by (3.6), we have

Ty (ue) = T (u) = %/Q\B o(ue) - Vu'dr + %/ vyo(ue) - Vu'dx

1 1 1
— —/ o(u.) - Vudr — —/ o(ue) - Vudr — —/ pi div(ue +u)dx. (3.22)
2 Jo\s. 2 /g, 2 Jp.
Let us add and subtract the term

%/Epi div(u)dz. (3.23)

Thus, the following expression is obtained after canceling the identical terms

—1
T (e — T (w) = / L) Vs

1
—/ pidiv(u)dx—g/ pidiv(ue —u)dx. (3.24)

Note that the variation of the energy shape functional results in an integral concentrated
into the inclusion B.. Therefore, in order to apply the definition for the topological
derivative given by (3.2), we need to know the asymptotic behavior of the function w.
with respect the small parameter . Thus, let us introduce the following ansatz:

Ue = U + W, + U, (3.25)

where wu is solution of the unperturbed problem (2.13), w. is solution to an auxiliary
exterior problem and . is the remainder.
After applying the operator o, in the ansétz (3.25) we have

o-(ue) = o.(u) + o-(we) + o(.). (3.26)
By expanding o(u) in Taylor’s series around the point & we obtain
o-(u.) = 0.(u)(2) + Vo (u(§))(z — &) + o (w.) + o-(1.), (3.27)

where ¢ is an intermediate point between x and Z. On the boundary of the inclusion B,
we have

[oc(ue)n = —pin. (3.28)
After evaluating (3.28) we obtain

(0(u5)|m37 —y0(Ue)|p. )0 = —pin on  0B.. (3.29)
Then, let us evaluate (3.27) on 0B, to have

—pin = (1 =7)o(u)(@)n — (1 =) (Vo(u(&))n)n + [oc(we)ln + [o=(ac)]n, ~ (3.30)

since (x — &) = —en on 0B.. By choosing o.(w.) such as

[oc(we)ln = ((v = Do (u)(2) —pd)n on 9B, (3.31)
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the following auxiliary boundary value problem is considered and formally obtained when
e — 0: Find o.(w,) such that:

dive.(w:) = 0 in R?,
o(w:) — 0 in oo, (3.32)
[oc(we)]Jn = @ on 0B,

with @ = ((7 — 1)o(u)(2) — p;I)n. The boundary value problem (3.32) admits an explicit
solution. For p; = 0, its solution can be found in [14, Ch. 5, pp. 156], for instance. Since
the stress o.(w.) is uniform inside the inclusion, the solution of (3.32) for p; # 0 can be
written in a following compact form as

0e(we)|p, = Tyo(u)(Z) + Ty, (3.33)
where T, is a fourth order isotropic tensor given by
(1 —1) a—p
T, =——=(26I+ I®I 3.34
! 2(1+ﬁ7)<6 L+ ay (3349
and T, is a second order isotropic tensor written as
ay
T, =pi——1L 3.35
VS PT (3.35)

Remark 4. The result shown in (3.33) fits the famous Eshelby problem. Formulated by
FEshelby in 1957 [6] and 1959 [7], this problem plays a central role in the theory of elas-
ticity involving the determination of effective elastic properties of materials with multiple
inhomogeneities (inclusions, pores, defects, cracks, etc.). This important result represents
one of the major advances in the continuum mechanics theory of the 20 century [11].

Now we can construct o.(a.) in such a way that it compensates for the discrepancies
introduced by the higher-order terms in € as well as by the boundary-layer w. on the
exterior boundary 0f2. It means that the remainder %. must be solution to the following
boundary value problem: Find . such that:

divo.(a.) = 0 in
o-(t:) = eo(.),
U, = —W, on 0f),
[o-(i)jn = 0 on Ow, (3.36)
lee] = 0 on 0B
| [o=(@)][n = ch c

with h = (1 —)(Vo(u(&))n)n. The estimate ||t.| g1 = O(e?) for the remainder .
holds true. See, for instance, [14, Ch. 5, pp 155].

From the above results, we can evaluate the integrals in (3.24) explicitly. In fact, after
replacing the ansétz for u. given by (3.25) in the first integral of (3.24) we have

/ () V' = / o)V / o) Vutde £ B (387

(.
-~ -~

(a) (b)

The remainder &;(¢) is given by

Ei(e) = /aa(ﬂa)-Vusdx

>

o (@) 25 [ Vull 2.
crlle]| mey [ Vull 2s.) < e2e® = O(E?), (3.38)

VARVAN
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where we have used the Cauchy-Schwarz inequality together with the estimation for the
remainder .. The term (a) in (3.37) can be developed in power of ¢ as follows

/ oo(u) - Vutde = / ~vo(u) - Vu'de

£ 5

= 7me?yo(u)(2) - Vus(2) + &), (3.39)
with the remainder & (¢) defined as

Ex(e) = / (h(x) — h(@))dz

5

< ||h(z) — h(2)|| 2. 11 22(B.)

< cellr = 2||r2py < e’ = O0(e?), (3.40)
where we have introduced the notation
h(z) — h(z) = o(u)(z) - Vu'(x) — o(u)(z) - Vu'(z). (3.41)

Note that, we have used again the Cauchy-Schwarz inequality and the interior elliptic
regularity of function u. Since the exact solution of the auxiliary problem (3.32) is known,
the term (b) in (3.37) can be written as

/ o.(w,.) - Vu'de = me*Vu' () - (T o(u)(2) + T,) + E(e). (3.42)

€

The remainder &;(e) is given by

E,(c) = / o.(w.) - (V' — Veu'(#))de

< loe(we) |2 Ve = Vu(@)]| 2(s.)
< el — 2| p2p.) < ce® = 0(e?), (3.43)
where we have used again the Cauchy-Schwarz inequality and the interior elliptic regu-

larity of function w.
The second term in (3.24) can be developed as follows

/ pi div(u)dz = mep; div(u)(2) + Eu(e), (3.44)

€

where the remainder &;(¢) is defined as

Eue) = / pi(div(u) — div(u)(2))dx

€

S 61H.T — i‘HLQ(BE)H]-HLQ(BE) S 0253 = 0(83). (345)

Once again, we have used the Cauchy-Schwartz inequality together with the interior
elliptic regularity of function w.
After replacing the ansétz for u. given by (3.25) into the last term of (3.24) we have

1

1 1
5/ pidiv(ue. —u)dx = 5/ pi div(w, + 1. )dx = 5/ pidiv(w.)dx + E5(g). (3.46)

where the remainder &;(g) has the following bound thanks to the estimate for .

Es(e) = %/ pi div(u.)dx

€

€

< al|Vie| 22y 11| 228,
< ngH'aEHHI(Q) < g = 0(53). (3.47)
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By using the constitutive relation and after algebraic manipulations, we have

1 / : 1 Di
— | pidiv(w.)dz = —/ —————tro.(w.)dx, (3.48)
2 Jp. 2 Jp. 2vp(p+A)
where tro.(w.), evaluated inside the inclusion, is given by
ary .
t00.(0) 1, = g (1= D0 (0)(2) + 20, (3.49)

From the above results, the variation of the energy shape functionals, given by (3.24),
can be developed in power of ¢ as follows

Tofu) = T (@) == 72 ou)(@) + (To(w)(@) + T,)] - Vur(a)
— mep; div(u)(z) — 7'('82% . pi div(u)(z)
2 P - (e
ey T ; Ei(e), (3.50)

where the remainders &;(¢) = o(g?), for i = 1,..., 5, as previously shown. By defining the
function f(g) = we? and after applying the topological derivative concept in (3.50), we
obtain

DrJ (@) = ~P,0(u)(@) - Vu'(2) — =, div(u) (7) — L (351)
z)=—-P,o(u)(z) - Vu’(t) — —p; div(u)(2) — — ———, .
T 7 1 —l—omp 2pu (1 + ay)
where [P, is a fourth order isotropic tensor given by
1 1—7 1 1—7
== 1 I+ —(a— I®l 3.52
with the coefficients o and [ defined as
A A+ 3
= d = ) 3.53
a . and f N (3.53)

For more details concerning the polarization tensor (3.52), see for instance [3].
Finally, the topological derivative of the shape functional (2.6) with respect to the
nucleation of a small circular pressurized inclusion is given by the sum

DT./—"UJ<.T) = DTJ(I') + KDT|W| Vx € () s (354)

where DpJ(x) is given by (3.51) while the topological derivative of the Griffith-type
dissipation energy term, kDr|wl|, is trivially obtained and given by

#Drlw|(z) = {

+r, if x€Q\w,
—k, if v €w. (3.55)
3.4. Expression of the topological derivative. Since we are using a very weak ma-
terial to replace the pressurized region, we can take the limit cases v — 0 and v — oo
in (3.54). Formally, for v — 0 the inclusion represents a hole and the transmission con-
dition on the boundary of the inclusion degenerates itself to non-homogeneous Neumann
boundary condition. In this case the topological derivative evaluated within the elastic
material 2\ @ becomes

Dy F,(z) = =Poo(u)(z) - Vu'(z) — (1 + o) p;div(u)(z) — ==+ k, VreQ, (3.56)
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with the polarization tensor Py given by

1 _
_ ;5H+0‘451®1. (3.57)

In addition, for v — oo, the elastic inclusion leads to a rigid inclusion. In this case the
topological derivative evaluated into the compliant material w results in

Po

DrF,(x) = —Pyo(u)(x) - Vu'(z) — k, V€ w, (3.58)
where the polarization tensor P, is given by
1+ p a— 0
P, =— I [®1. 3.59
28 10 % (3.59)

Remark 5. The same formula (3.54) holds true for heterogeneous medium [9], provided
that the heterogeneity is locally Lipschitz continuous.

4. TOPOLOGY OPTIMIZATION ALGORITHM

In this section the obtained topological derivative expression is used to devise a simple
topology optimization algorithm specifically designed to simulate the whole nucleation
and propagation process of hydraulic fracturing. This algorithm was originally proposed
in [18]. It is based on the fact that the introduction of infinitesimal inclusion at the region
where the topological derivative is negative allow for a decreasing on the values of the
shape functional. For the sake of completeness, the adapted version of the algorithm to
the context of hydraulic fracturing process is presented below. For more details see [18].

The present algorithm is based on the introduction of an inclusion at the region where
the topological derivative is negative. If the size of the inclusion is small enough to
corroborate with the theory, but at the same time large enough to be treated numerically,
it is expected that the shape functional (2.6) decreases. The size of inclusion is associated
with the region w* where the topological derivative field is negative, i.e.,

w i={r e Q: DrF,(x) <0} . (4.1)

In principle w* must not be a connected subset, that is, there might be nucleation of
damage in front of the previously damage zone, but also elsewhere in the body. In the
first case, nucleation of damage yields evolution of the damage set, whereas in the latter
it means genuine damage nucleation. Let us emphasize that from a theoretical point of
view, the topological derivative holds away from the damage region and for an infinitesimal
inclusion only. On the other hand, the topological derivative can be used as a steepest-
descent direction in the optimization process like in any method based on the gradient of
the objective functional. Therefore, for practical purposes, since the numerical method
introduces a grid of finite size, we will consider nucleation of inclusions of finite sizes
but small enough such that a decreasing of the proposed functional in each iteration is
ensured.

The algorithm can be designed either by nucleating only at those points where the
topological derivative achieves its minimum, or at all points were it is negative. On the
other hand, an intermediate choice would be to calibrate the size of the inclusion to be
nucleated according to the characteristic size of the previously damaged region. This
choice will be provided by the model parameter g € (0, 1), with the extreme choices given
by = 0 (minimum points only), and 8 = 1 (the whole negative region), respectively. To
this aim, let us introduce the quantity

DTJT'.>|< =

w

min DrF,(z) , (4.2)

TEW*
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which allows us to define the inclusion to be nucleated w? C w* as follows
W ={x cw: DpF,(z) < (1 - B)DrF} (4.3)

where 3 € (0,1) is chosen such that |w?| ~ (7(?)/4 (with [ < §), so that the size of the
inclusion to be nucleated is here related to the width ¢ of the initial damage. Therefore,
if the initial damage is crack-like (§ small), 3 will be taken as small as to satisfy |w?| <
(m1%)/4. By this choice, a damage will evolve like a crack. As a matter of fact, the
parameter [ induces a threshold for the topological derivative Dy F,(z) and the volume
of the inclusion will only depend on [, while its shape and location will depend on the
contour lines (level-sets) of DrF,,. We will show through some numerical experiments that
this strategy ensures a decreasing of the proposed functional at each iteration, provided
that the size of the inclusion to be nucleated w” is small enough.

The algorithm can be outlined as follows. Given the solution of the linear elasticity
system (2.8), the associated topological derivative field (3.54) is evaluated. If the field is
positive everywhere or |w*| < (7l?)/4, a perturbation of size (7l?)/4 at any point of the
domain is likely to increase the value of the functional. In this case, the algorithm will not
propagate the damage, and it is possible to increase the pressure p; further and run a new
analysis. On the contrary, if the topological derivative field is negative in some undamaged
region and the condition |w*| > (7(?)/4 is fulfilled, a damage w” will be nucleated inside
w*, with 8 : |w?| ~ (71?)/4. Schematically, one can see the newly-damaged region as an
half-disk of radius /2 located at the tip of the pre-existing damage. Since the nucleation
of a new damage w” modifies the problem, the solution to the elasticity system associated
with the new topology need to be computed again. Finally, the new topological derivative
field is evaluated and the process is repeated until the condition |w*| > (7/%)/4 is no more
fulfilled for any pressure increment. The elasticity system is solved by the finite element
method. In order to improve the numerical results, the mesh at the crack tip is intensified
in each iteration of the optimization process. The above procedure written in the form of
pseudo-code is given in Algorithm 1.

Algorithm 1: The damage evolution algorithm.

input : Q w,l, N, py, Ap;

output: The optimal topology w*

for 1=1: N do

solve elasticity system (2.8);

evaluate the topological derivative Dy F,, according to (3.54);
compute the threshold w* from (4.1);

while |w*| > (71?)/4 do

intensify the mesh at the crack tip;

solve elasticity system and evaluate DpF,;
compute the threshold w* from (4.1);
compute the threshold w? from (4.3);

10 nucleated new inclusion w? inside w*:

11 update the damaged region: w + w U w?;
12 solve elasticity system and evaluate DpF,;
13 compute the threshold w* from (4.1);

14 end while

15 end for

© W0 N O Tt A W N
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5. NUMERICAL EXPERIMENTS

As mentioned in Section 1, the reference domain 2 stands for one block of the reservoir,
i.e., a limited region which contains an initial damage representing a single geological
fault, see Figure 1. The topology is identified by the elastic material distribution and
the compliant material is used to represent the geological fault. We assume that in all
examples the structure is under plane strain assumption and that the total intensity of
the pressure p was divided into N uniform increments. In addition, the elasticity problem
is discretized by using linear triangular elements only.

5.1. Elementary example. In this first example, the hold-all domain € is given by a
square with dimension (5 x 5)m? as shown in Figure 5. Homogeneous Dirichlet boundary
conditions are considered in all sides of the domain. A pre-existing geological fault,
represented by the initial damage of length h and width 9, is located at the center of the
bottom side immediately above the pressurization well. The material properties such as
the modulus of elasticity E and the Poisson ratio v correspond to the values used in [15].
In addition, the inclusion is made of a material with an elasticity modulus po£ and its
diameter is specified by the parameter [. The total intensity of the pressure is p = 8 MPa
and was divided into N = 200 uniform increments. All these data are summarized in
Table 1.

TABLE 1. Elementary example: Parameters.

Parameter Value Parameter Value

h 1,0 m E 30 GPa
5 0,025 m 00 1076

l (2/3) v 0,3

P 8 MPa Ks 320,0 J/m

FI1GURE 5. Elementary example: Geometry.

5.1.1. Critical pressure. As mentioned in Section 2, it is necessary to verify whether the
proposed hydraulic fracture model permits the characterization of the fault-activation
pressure. To this aim, five tests were made with different values for the initial width
0 of the damage, namely § € {%, %, %, ﬁ, 3;—O}[m] The parameters were maintained
according to Table 1. The critical pressure p. was selected as the value of the current
pressure which allows the nucleation of the first inclusion, that is, when the condition

|w*| > (w1?)/4 holds for the first time. Figure 6 illustrates the critical pressure obtained
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for the different tests, which are normalized according to the first estimate found for
the critical pressure p®. Therefore, the introduction of the parameter ks through (2.15)
allows for dealing with a feasible critical pressure as shown in Figure 6 (blue bullet line).
We claim however that it is an ad hoc correction of the model which works for o > 0.
The limiting case 6 — 0 is much more involved and has been partially addressed in
[17], for instance. However, the proper variational limit is currently out of reach for the
planar vectorial problem (i.e., without the anti-plane assumption). As expected, with the

1.5

—#— without correction
—e— with correction

pe/pe

0.5 ¢

0 I I I I I I
0 50 100 150 200 250 300 350

1/6

FIGURE 6. Elementary example: Convergence analysis for the critical pressure.

decrease of the width §, the energy density at the crack tip increases. Note that without
a scale factor correction, the critical pressure decreases towards zero. On the other hand,
the use of the factor ¢ leads to an asymptotic behavior for the critical pressure.

Remark 6. The result shown in Figure 6 can be seen as a numerical evidence of the
mathematical convergence of the proposed approach to a hydraulic fracture model in its
strict sense. Therefore, the study of such underlying mathematical convergence is an
important topic which will be treated in future works.

5.1.2. Damage evolution. The final result obtained at iteration number 215 is shown in
Figure 7, after which the program was interrupted. Note that the crack trajectory occurs
in a straight line as expected. The pressure has been incremented 80 times to comply
with the propagation criterion. Moreover, the observed critical pressure is p. = 3.2 MPa.
Note that the model dissipates energy at each iterations, as shown in Figure 8.

5.2. Transverse wells. This second example has the same geometry and boundary con-
ditions of the previous one. However, in the present case two transverse wells centered
at the points ¢; = (2.8,1.5) and ¢ = (2.8,2.5) and with diameters d; = 0.3 m and
dy = 0.7 m, respectively, are considered. See Figures 9(a) and 10(a). In this example,
the total intensity of the pressure is p = 6 MPa and was divided into N = 150 uniform
increments. The remainder parameters being chosen according to Table 1. In addition,
two different situations are considered. The first one (case 1) considers that the transverse
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F1GURE 7. Elementary example: Final result.

150 T T T T

100
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shape functional
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|
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-100 |

450 1 1 1 1
0 50 100 150 200 250
iteration

FIGURE 8. Elementary example: Total energy F,(u) from (2.6).

wells are not pressurized. In the second situation (case 2) the transverse wells are pressur-
ized and the intensity of the pressure is the same as that inside the initial damage. Thus,
the scope of this study is the influence of these transverse wells on the crack trajectory.
The final results are shown in Figures 9(b) and 10(b). In the case 1 the observed
critical pressure is p. = 3.24 MPa. Note that in this case the smaller no-pressurized
transverse well only affect the crack trajectory. After then, the crack tip attains the
second transverse well. In the case 2, the observed critical pressure is p, = 3.2 MPa. In
this case, the smaller pressurized transverse well attracts abruptly the crack trajectory.
After then, the crack tip attains the second transverse well again. This fact suggests a
potential strategy to control the crack trajectories by inserting transverse wells into the
reservoir. In addition, it can be verified from the case 2 that the proposed algorithm
was able to activate the mechanism of damage nucleation, independently of any initial
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damaged region on the boundary of the smaller transverse well. As matter of fact, the
critical pressure associated to the nucleation phenomenon was p. = 4.08 MPa. Finally,
the behavior of the square root of the strain energy, defined by

E(u) = \/% /Qa(u) -Vus, (5.1)

in both cases, is shown in Figure 11.

(a) geometry (b) final result

FIGURE 9. Case 1: No-pressurized transverse wells.

(a) geometry (b) final result

FIGURE 10. Case 2: Pressurized transverse wells.

5.3. Stratified block. In this example, we consider an heterogeneous material: the block
is composed by two layers with different elasticity modulus, namely, F; = 30 GPa and
Ey = 60 GPa. In addition, the geometry and boundary conditions are the same as
proposed in the elementary example of Section 5.1. The different cases treated in this
example differ from each other by the spatial distribution of the material properties F;
and Fy, as shown in Figures 12(a) and 13(a). The remainder parameters being chosen
according to Table 1.
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FIGURE 11. Transverse wells: Square root of the strain energy £(u) from (5.1).

The final results are shown in Figures 12(b) and 13(b). In the first case, the observed
critical pressure is p. = 3.32 MPa. Note that in this scenario, the trajectory of the fracture
follows the direction of the interface between the two materials when the crack tip attains
the stiffer layer. In the second case, the observed critical pressure is p. = 4.4 MPa. In this
situation the trajectory of the fracture only suffers a little change in its direction when
the crack tip attains the weaker layer.

(a) geometry (b) final result

FIGURE 12. Stratified block: Case 1.

5.4. Heterogeneous medium. In this last example a heterogeneous medium is con-
sidered. The geometry, boundary conditions and the parameters are the same of the
elementary example of Section 5.1. However, in this case the Young modulus £ is corrupt
with White Gaussian Noise (WGN) of zero mean and standard deviation 7. Therefore,
E is replaced by E, = E(1+ sn), where s : 2 — R is a function assuming random values
in the interval (0,1) and n = 5 corresponds to the noise level. The Figures 14(a) and
14(b) shows the corrupted Young modulus E,(z) and the final result, respectively. The
observed critical pressure is p = 7.92 MPa. Note that, due to the medium heterogeneity,
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(a) geometry (b) final result

FIGURE 13. Stratified block: Case 2.

we can observe kinking and bifurcations phenomena, which is in agreement with what it
is expected from the physical point of view.

(a) corrupted Young modulus (b) final result

F1GURE 14. Heterogeneous medium.

6. CONCLUDING REMARKS

This paper has demonstrated that the linear and variational fracture model introduced
by Francfort and Marigo may be applied to hydraulic fracturing process, by means of an
original use of topological derivative concept. In particular, a novel hydraulic fracture
model obtained by adapting the one introduced by Francfort and Marigo to the con-
text of hydraulic fracturing process has been proposed. A shape functional given by the
sum of the total potential energy of the system with a Griffith-type dissipation energy
term has been minimized with respect to a set of ball-shaped pressurized inclusions by
using the topological derivative concept. It means that, the topological asymptotic ex-
pansion of such shape functional with respect to the nucleation of a circular inclusion
endowed with non-homogeneous transmission condition on its boundary, has been rigor-
ously developed. In addition, we have shown that the associated topological derivative
corroborates with the famous Eshelby theorem. The obtained result has been used to
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devise a topology optimization algorithm specifically designed to simulate the whole nu-
cleation and propagation process of hydraulic fracturing. The strikingly simplicity of the
proposed topological derivative-based fracture modelling should be noted. In fact, since
the loading, given by the prescribed pressure acting within the damage region, comes out
naturally from the variational formulation, just a minimal number of user-defined algo-
rithmic parameters is required. Finally, we have provided four test cases which showed the
potential of our approach. From this test cases, typical features of hydraulic fracturing
process, including the characterization of the fault-activation pressure and specific crack
path growth, allowing for kinking and bifurcations has been observed. Further study is
related to the underlying mathematical convergence, and the three-dimensional case.
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