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Abstract. The purpose of this paper is to prove the relation incε = Curl κ relating the

elastic strain ε and the contortion tensor κ, related to the density tensor of mesoscopic

dislocations. Here, the dislocations are given by a finite family of closed Lipschitz curves
in Ω ⊂ R3. Moreover the fields are singular at the dislocations, and in particular the

strain is non square integrable. Moreover, the displacement fields shows a constant jump
around each isolated dislocation loop. This relation is called after E. Kröner who first

derived the same formula for smooth fields at the macroscale.

1. Introduction

Let Ω be a simply-connected smooth and bounded subset of R3. Let L be a set of
dislocation lines in Ω, and the dislocation density ΛL ∈ M(Ω,M3) be given as a Radon
measure concentrated in L, defined as

ΛL := τ ⊗BH1
bL, (1)

with τ , the tangent vector to L andH1
bL the one-dimensional Hausdorff measure concentrated

in L, and where B stand for the Burgers vector of the line, constant for a given line. Note
that by definition, Div ΛT

L = 0. Another dislocation density tensor, the contortion, is
introduced as follows:

κL := ΛL −
I2
2

trΛL.

By (1), it is seen that trΛL = 0 for edge dislocations, for which the Burgers vector is or-
thogonal to the line. Therefore, κL = ΛL for pure edge dislocation loops, that is, planar
loops with out-of-plane Burgers vector.

It is well known that as soon as dislocations are present, i.e. as soon as their density is
nonvanishing, the strain can not be a symmetric gradient of a vector field. At the macro-
scopic scale, that is, at a scale where the fields are assumed smooth, it is indeed known that
the incompatibility of the elastic strain ε is related to the curl of the contortion tensor κ.
Here the contortion is a symmetric tensor related to the macroscopic dislocation density Λ
by the relation κ = Λ − I2

2 trΛ, with Λ the macroscopic dislocation density. The so-called
Kröner’s identity reads

incε = Curl κ. (2)

This relation was to the knowledge of the author first introduced by Ekkehart Kröner in
[6] (see also [7]) it strictly spoken appeared first in [13] in a simple geometrical setting.
The geometrical meaning of the contortion tensor in a differential geometry approach to
dislocations has to be emphasized, as discussed in e.g., [5,7,11,17]. In differential geometry
as well as in generalized non-Riemannian gravity, such a relation is well-known (see [8, 9])
and is nothing but the condition of teleparallelism, which means that the Riemann-Cartan
curvature tensor is equal to zero: relation (2) is just the linear approximation of the condition
of teleparallelism.
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Note that there exists few works of Mathematics about the incompatibility operator per-
se, or about incompatible fields, but recent contributions can be found, see e.g., [?, 2, 12].

Nonetheless, the concept of dislocation line is related to another scale of matter descrip-
tion, namely the mesoscale, where it appears as the one-dimensional set of singularity for
the elastic strain ε and stress field σ = Aε, with A = 2µI4 +λI2, the elasticity tensor (where
λ and µ are the Lamé coefficients). It is indeed well-known that these fields are not square
integrable at this scale. Proving a Kröner identity at the mesoscale such as

incε = Curl κL,

was carried on by the author in a series of works [18–20] for some simple families of lines.
Though, a proof of such relations for general lines was still missing. It is the purpose of this
paper to propose a proof by studying pointwise and distributional properties of fields which
posses a jump around dislocation lines, and are thus understood by means of functions of
bounded variation.

Notations and conventions. Let M3 denote the space of square 3-matrices, and S3 that
of symmetric 3-matrices. Let E ∈ S3 and β ∈ M3. We will sometimes use the following
shortcut notation:

E = Ef (σ)⇔ −divσ = f, almost everywhere in Ω, where σ = AE, (3)

E = D(κL)⇔ incE = Curl κL, (4)

β = B(ΛL)⇔ Curl β = ΛT
L. (5)

The divergence and curl of a tensor E are defined componentwise as ( divE)i := ∂jEij and
( Curl E)ij := εjkl∂kEil, respectively. The incompatibility of a tensor E is the symmetric1

tensor defined componentwise as follows2:

( incE)ij := ( Curl CurlT E)ij = εikmεjln∂k∂lEmn, (6)

where subscript t stands for the transpose of a matrix.
The symmetric and skew-symmetric parts of a tensor M are denoted by MS and MA, re-

spectively. Similarly, the symmetric and skew-symmetrci parts of a gradient ∇u are denoted
by ∇Su and ∇Au, respectively.

The functional space of (finite) vector-valued Radon measures, M(Ω,R3), is defined as
the dual space of Cc(Ω,R3), that of tensor-valued Radon measures, M(Ω,M3), as the dual
space of Cc(Ω,M3). A function u is said of bounded variation if u ∈ L1(Ω) and if its
distributional gradient Du is a Radon measure. Moreover, one writes

u ∈ SBV (Ω)

to mean that u is of bounded variation and that Du is decomposed additively in two terms,
the first which is absolutely continus w.r.t. Lebesgue measure on Ω, and the second which
is concentrated on the jump set of u. Moreover,

|Λ|M := sup
ϕ∈Cc(Ω):

‖ϕ‖∞≤1

|〈Λ, ϕ〉M|,

where 〈Λ, ·〉M stands for the duality pairing. We refer to [1] for an introduction to the
mathematical properties of these functions.

1Symmetry is intended with ( incE) seen as a distribution tenor.
2This definition is intended in Cartesian components, whereas in curvilinear basis, the componentwise

definition must be adapted [21].
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Aim of the work. The aim of this work is to prove existence and functional properties
of a symmetric tensor E such that both conditions E = Ef (σ) and E = D(κL) hold true,
provided the external volume force f and contortion tensor κL (i.e., dislocation density)
are prescribed. Let us remark that, as proved in [14, 15], there exists a a unique solenoidal
solution F to problem

Curl F = µ,

where mu is a divergence-free measure. However, this result is not sufficient to deduce the
relation incε = Curl ( CurlT ε) = Curl κL, one reason being that κTL is not in general a
divergence-free measure (as opposed to ΛT

L, and except for pure edge dislocation loops), and
another the fact that F is not in general a symmetric tensor.

For this reason another procedure must be undertaken to achieve our aim. The outline
of the method is as follows: we first establish pointwise properties of the solution of the
elasticity problem with jump on a surface enclosed by the dislocation. Then distributional
properties of such solutions allow us to prove that there exist a β such that β = B(ΛL), that
is, we obtain the classical definition of a dislocation in finite elasticity, here holding true
for infinitesimal strains. In the main theorem, we simply collect all preliminary result and
compute the curl of CurlT βS to get the sought result.

2. Preliminary results

The aim of this section is to prove that in the presence of a dislocation line in linear
elasticity, there exists a strain E such that (4) and (5) are satisfied. To this aim, a series of
results about fields of bounded variation and deformation must be proved.

Lemma 1. Let L be a Lipschitz closed curve in R3 and S a bounded Lipschitz surface with
boundary L and unit normal N . Let B ∈ R3. The solution of

div(A∇w) = 0 in R3 \ S
[[w]] := w+ − w− = B on S

[[(A∇w)N ]] := ((A∇w)N)
+ − ((A∇w)N)− = 0 on S

(7)

is given componentwise by

wi(x) = −Bj

∫
S

(A∇Γ(x′ − x·)N(x′))ij dH
2(x′), (8)

for x ∈ R3 \ S, where Γ is the solution in R3 of div(A∇Γ) = δ0I2.

Proof. Let S ⊂ Ω̂ be a smooth surface of discontinuity bounded by L. Let S− 6= S be
another smooth surface bounded by L and staying below S. Let V be the volume comprised
between S and S− and SV := S ∪ S− with outer unit normal N be such that ∂V := SV .
Supposing that w is smooth enough and summable in R3, we have the following identities
in V : ∫

V

∂′k(∂′lwj(x
′)Γip(x′ − x))dx′ =

∫
SV

∂′lwj(x
′)Γip(x′ − x)Nk(x′)dH2(x′)

and ∫
V

∂′l(wj(x
′)∂′kΓip(x′ − x))dx′ =

∫
SV

wj(x
′)∂′kΓip(x′ − x)Nl(x

′)dH2(x′).

Thus by subtraction it holds∫
V

∂′k∂
′
lwj(x

′)Γip(x′ − x))dx′ −
∫
V

wj(x
′)∂′k∂

′
lΓip(x′ − x))dx′

=

∫
SV

(∂′lwj(x
′))
−

Γip(x′ − x)Nk(x′)dH2(x′)−
∫
SV

w−j (x′)∂′kΓip(x′ − x)Nl(x
′)dH2(x′).
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Moreover, the same identities in R3 \ V̄ yield∫
R3\V̄

∂′k∂
′
lwj(x

′)Γip(x′ − x))dx′ −
∫
R3\V̄

wj(x
′)∂′k∂

′
lΓip(x′ − x))dx′

= −
∫
SV

(∂′lwj(x
′))

+
Γip(x′ − x)Nk(x′)dH2(x′) +

∫
SV

w+
j (x′)∂′kΓip(x′ − x)Nl(x

′)dH2(x′),

and hence, by summing,∫
R3\SV

∂′k∂
′
lwj(x

′)Γip(x′ − x))dx′ −
∫
R3\SV

wj(x
′)∂′k∂

′
lΓip(x′ − x))dx′

= −
∫
SV

[[∂′lwj(x
′)]]Γip(x′ − x)Nk(x′)dH2(x′) +

∫
SV

[[wj(x
′)]]∂′kΓip(x′ − x)Nl(x

′)dH2(x′).

Contracting with Aljki yields∫
R3\SV

( div(A∇w)p(x′)Γ(x′ − x))dx′ −
∫
R3\SV

wj(x
′)( div(A∇Γ)jp(x′ − x))dx′

= −
∫
SV

[[A∇′w(x′)N ]]iΓip(x′ − x)dH2(x′) +

∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′),

(9)

that is, for x ∈ R3 \ SV , ∫
R3\SV

( div(A∇w)i(x
′)Γip(x′ − x))dx′ − wp(x)

= −
∫
SV

[[A∇′w(x′)N ]]iΓip(x′ − x)dH2(x′)

+

∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′).

(10)

Taking the particular3

w =

∫
S

(A∇Γ(y − ·))N(y)BdH2(y),

w satisfies div(A∇w)(x) = 0 for x ∈ R3 \ S, and hence, by (10) and for x ∈ R3 \ SV ,

wp(x) =

∫
SV

[[A∇′w(x′)N ]]iΓip(x′ − x)dH2(x′)

−
∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′).

Keeping this w, consider now any smooth tensor test fuction ϕ with compact support in
place of the tensor Γ. By (10), it holds∫

R3\SV

wj(x
′)( div(A∇ϕ)jp(x′))dx′ =

∫
R3

wj(x
′)( div(A∇ϕ)jp(x′))dx′

=

∫
SV

[[A∇′w(x′)N ]]iϕip(x′)dH2(x′)−
∫
SV

[[wj(x
′)]] (A∇′ϕ(x′)N)jp dH

2(x′).

(11)

Define the distribution γB concentrated in S as

〈γB , ϕ〉 := −
∫
S

(A∇ϕ)N(y)BdH2(y).

3Here we omit the intermediate step of taking a cut-off function.
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By definition, w(x) =
∫
S

(A∇Γ) (x− y)N(y)BdH2(y) = −〈γB ,Γ(x− ·)〉. Observe that

div(A∇w) = −γB (12)

holds in the distribution sense, since for any smooth test function with compact support ϕ,
by definition of the convolution between distributions [16], one has

〈div(A∇w), ϕ〉 = 〈w, div(A∇ϕ)〉 = −〈〈γB ,Γ(x− ·)〉, div(A∇ϕ)(x)〉
= −〈γB , 〈div(A∇Γ)(x− ·), ϕ(x)〉〉
= −〈γB , ϕ〉. (13)

Substracting (13) from (11) yields

0 =

∫
SV

[[A∇′w(x′)N ]]iϕip(x′)dH2(x′)−
∫
S

[[wj(x
′)−Bj ]] (A∇′ϕ(x′)N)jp dH

2(x′)

−
∫
S−

[[wj(x
′)]] (A∇′ϕ(x′)N)jp dH

2(x′), (14)

which since it holds for any test function ϕ, yields (7) by (12), achieving the proof. �

Remark that taking an arbitrary ∂Nϕ on S− while ∂Nϕ = ϕ = 0 on S in (14) yields the
continuity of w on S−. Moreover, by (8), it holds

∂kwi(x) = −Bj

∫
S

∂k (A∇Γ(y − x)N(y))ij dH
2(y). (15)

More results on this topic can be found in [4].

Lemma 2. Let L ⊂ Ω be the union of a finite number of smooth dislocation loops and S ⊂ Ω
a smooth surface enclosed by L. Referring to Lemma 1, let w be the solution of

−div(A∇w) = 0 in R3 \ S, [[w]] = B, [[(A∇w)N ]] = 0 on S.

Then w ∈ SBV (Ω,R3), ∇w ∈ Lp(Ω,R3) for 1 ≤ p < 2 and

−Curl ∇̄w = ΛT
L,

in the distribution sense, where ∇w is the absolutely continuous part of the distributional
derivative Dw in Ω (that is, ∇w = ∇̄w almost everywhere). Moreover −div(A∇w) = 0 in
R3 \ L, w ∈ C∞(Ω \ L,R3) and it holds

|∇w(x)| ≤ c|B||L|(1 +
1

d(x,L)
), (16)

with c a constant depending on the line curvature, and |L| its length.

Proof. The second part of the statement, namely (16), is proven as in Lemma 4 of [15]
by estimating |∂iw(x)| by means of formula (15), and up to a positive factor given by the
uniform bound of A. Let us now prove the first part of the statement in the case of a smooth
L. Let w be a solution to (7). By (16), ∇w ∈ Lp(Ω,M3) for p < 2. It has been shown that
w is smooth outside S where it has a jump of amplitude b := |B|. In particular this means
that w belongs to SBV (Ω,R3) with its distributional derivative given by

〈Dw,ϕ〉 := −〈w, divϕ〉 = S(ϕ) + 〈∇w,ϕ〉, (17)

for all ϕ ∈ D(Ω,M3), and where S denotes the distribution S(ϕ) = −
∫
S
NjBiϕijdH2.

Let us prove that −Curl ∇w = ΛT
L. To this aim let us take ψ ∈ D(Ω,M3) and write

−〈Curl ∇w,ψ〉 := −〈∇w, Curl ψ〉 = −〈Dw, Curl ψ〉+ S( Curl ψ)

=

∫
C

τjBiψijdH1, (18)

where the second equality follows from (17) with ϕ = Curl ψ, and the third one by Stokes
theorem and the distributional identity Curl Div = 0.
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In order to prove that Div ∇w = 0, let Ŝ ⊃ S such that Ŝ separates Ω in two parts Ω−

and Ω+. Then for every test function ϕ ∈ C∞c (Ω,R3) it holds∫
Ω

∇w∇ϕdx =

∫
Ω+

∇w∇ϕdx+

∫
Ω−
∇w∇ϕdx =

−
∫

Ω+

Div ∇wϕdx−
∫

Ω−
Div ∇wϕdx+

∫
Ŝ+

∂Nw
+ϕdx−

∫
Ŝ−

∂Nw
−ϕdx = 0,

achieving the proof.
�

Remark 1. Since w ∈ L1(Ω) and ∇w ∈ Lp(Ω) with 1 ≤ p < 2, Sobolev’s embedding yields

w ∈ Lp∗(Ω), and hence w ∈W 1,p(Ω) and the trace of w, w|∂Ω ∈W 1/p′,p(∂Ω). On the other
hand (16) implies that ∇w ∈ Lp(∂Ω) with 1 ≤ p < 2.

3. Main result: Kröner relation

Let ϕ ∈ W 1,p′

0 (Ω,R3) with p′ > 3. Then by Sobolev embedding, ϕ ∈ C0(Ω,M3), and
|〈ΛL, ϕ〉| ≤ C‖ϕ‖∞ ≤ C ′‖ϕ‖W 1,p′ and hence

ΛL, κL ∈W−1,p(Ω), 1 ≤ p < 3/2. (19)

In the following theorem we prove Kröner relation at the mesoscopic scale, i.e., incε =
Curl κL. The condition ε ∈ Lp(Ω), with 1 ≤ p < 2 immediately entails that incε ∈
W−2,p(Ω), since Φ ∈W 2,p′

0 (Ω,M3) with p′ > 2 yields

|〈 incε,Φ〉| = |〈ε, incΦ〉| ≤ C‖ε‖Lp(Ω)‖Φ‖W 2,p′ (Ω).

Note however, that by virtue of (19), Kröner relation must be understood as inc∗ε =

Curl κL, where inc∗ε is the restriction of incε to W 2,p′

0 (Ω) for p′ > 3.

Theorem 1. Let f ∈ C∞(Ω) and g ∈ C∞(∂Ω). Under the hypotheses of Lemma 2, there
exists u ∈ SBV (Ω,R3) such that ∇̄u ∈ Lp(Ω,M3) for 1 ≤ p < 2 and satisfying ∇̄Su =
Ef (σ) ∈ Lp(Ω,S3) and ∇̄u = B(ΛL). Furthermore, ∇̄Su = D(κL), where κL ∈ W−1,p(Ω)
with 1 ≤ p < 3/2.

Proof. Let w be the vector of Lemma 2. Then

−Curl ∇̄w = ΛT
L.

Let v ∈ H1(Ω,R3) be a weak solution to4

− div(A∇Sv) = −f in Ω, (A∇Sv)N = −g − (A∇w)N on ∂Ω \ S,
with the value of (A∇w)N on ∂Ω provided by (15). Then, u := −(v + w) satisfies

−div(A∇̄Su) = f in Ω \ S, (A∇̄Su)N = g on ∂Ω \ S. (20)

Remark that if instead, one poses v = −w|∂Ω on ∂Ω, then5 u = 0 on ∂Ω.
In principle this solution u depends on the choice of surface S. However, taking another

surface S′ enclosed by L will produce a shift of u by −B in the volume bounded by S ∪ S′,
and hence will not affect the absolutely continuous part of its distributional gradient ∇̄u.
Moreover, w will be smooth in Ω \ S for any choice of S, from which it is deduced that w is
smooth in Ω \ L. Therefore ∇̄u is independent of S.

Since [[u]] = −B on S and
[
[(A∇̄u)N

]
] = 0 on S, one has

Curl ∇̄u = −Curl ∇̄w = ΛT
L,

4By Remark 1, one has (A∇Sw)N ∈ L4/3(∂Ω) and hence a solution exists in H1(Ω) by [3, Theorem
6.3.5].

5A weak solution also exists in this case, since by Remark 1, one has w|∂Ω ∈ W 1/p′,p(∂Ω,R3) for

1 ≤ p < 2. Now, by classical lifting theorems, the non-homogeneous problem is recast into a homogeneous
problem with a right-hand side in W−1,p(Ω,R3) for which a solution v ∈W 1,p(Ω,R3) exists as shown in [20].
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with ∇̄u ∈ L1(Ω) by virtue of Lemma 2, and recalling that ∇v = Dv is intended in the
distribution sense, and [[v]] = 0. Moreover, ∇̄Su ∈ Lp(Ω). Now, by identity ∇̄u = ∇̄Su +
∇̄Au, one has

Curl ∇̄Su = ΛT
L − Curl ∇̄Au = ΛT

L −∇Tω + I2 divω,

where one has componentwise (∇̄Au)ij = εijkωk and ωi = 1
2εikl(∇̄u)kl. Furthermore, divω =

∂iωi = − 1
2 tr Curl ∇̄u = − 1

2 trΛL, and hence

Curl ∇̄S ū = κTL −∇Tω. (21)

Now, ω ∈ L1(Ω,R3) and hence ∇ω = Dω is intended in the distribution sense, in such a
way that Curl ∇ω = 0, yielding

inc∇̄Su = Curl Curl T ∇̄Su = Curl (κL −Dω) = Curl κL,

achieving the proof. �

4. Concluding remarks

Kröner relation is often mentioned in the literature but a complete proof was missing at
the mesoscale. By means of this formula, it was the aim of this paper to make the link
between functions of bounded variation, viz., the displacement field u, and dislocations at
the mesoscopic scale. This formula shows several important features. First, the role of
the contortion, in place, or in parallel, of the dislocation density. It turns out that the
contortion has a clear geometrical meaning related to the metric torsion in the presence
of dislocations [9, 17]. Second, it shows the crucial role of the incompatibility operator.
Indeed, this operator is related to the Beltrami decomposition of symmetric tensors, namely
ε = ∇Su + incF (see, e.g., [10]), where incF is the part of the elastic strain, which is
incompatible. Note that once such a relation is proved, the strain satisfies

incε = inc incF = Curl κ,

putting light on a special 4th-order operator, inc inc, whose mathematical properties, among
which coercivity (that is, ellipticity) were studied in [2].

Lastly, this formula teaches us that under the assumption of linearized elasticity, where the
skewsymmetric part of ∇̄u (recall that ∇̄u stands for the absolutely continuous part of Du
w.r.t. Lebesgue measure in Ω) is not taken into account, the relation between deformation
and dislocation density might be given by the incompatibility of ∇̄Su, precisely by Kröner’s
formula, in place of the classical Curl ∇̄u = ΛT

L, valid for finite as well as for infinitesimal
elastic strains, which would require to also consider the skewsymmetric part, for which no
Poincaré-Korn-types of bounds do exist.
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