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Abstract. The purpose of this article is to improve the existence theory for the steady problem of an one-equation turbulent
model. For this study, we consider a very general model that encompasses distinct situations of turbulent flows described
by the k-epsilon model. Although the boundary-value problem we consider here is motivated by the modelling of turbulent
flows through porous media, the importance of our results goes beyond this application. In particular, our results are suited
for any turbulent flows described by the k-epsilon model whose mean flow equation incorporates a feedback term, as the
Coriolis force, the Lorentz force or the Darcy-Forchheimer’s drag force. The consideration of feedback forces in the mean
flow equation will affect the equation for the turbulent kinetic energy (TKE) with a new term that is known as the production
and represents the rate at which TKE is transferred from the mean flow to the turbulence. For the associated boundary-value
problem, we prove the existence of weak solutions by assuming that the feedback force and the turbulent dissipation are
strong nonlinearities, i.e. when no upper restrictions on the growth of these functions with respect to the mean velocity and
to the turbulent kinetic energy, respectively, are required. This result improves, in particular, the existence theory for the
classical turbulent k-epsilon model which corresponds to assume that both the feedback force and the production term are
absent in our model.
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1. Introduction

In the literature of Fluid Mechanics, there are two distinct approaches to describe turbulent flows through porous media
by using the k-epsilon model. For the first approach, the turbulent transport equations are derived by volume averaging
the Reynolds-averaged microscopic equations (see e.g. [16, 21]). As for the second approach, the turbulent transport
equations are derived by time averaging the extended Darcy-Forchheimer model obtained by volume-averaging the
microscopic equations (see e.g. [1]). Both techniques aim to derive suitable macroscopic transport equations, but, as
the authors of [1] have concluded, turbulent models derived directly from the general macroscopic equations do not
accurately characterize turbulence induced by the porous medium. The difference on the order of application of the
two concepts of average gives rise to distinct equations for the transport of the turbulent kinetic energy. This still
happens even if we apply the average concepts by the same order but use different techniques to model the production
term (compare [21] with [16]). Motivated essentially by the models [16, 21], we consider, in this work, the following
general boundary-value problem,

div u = 0 in Ω,(1.1)
(u · ∇)u = g − f(u) − ∇p + div ((ν + νT (k)) D(u)) in Ω,(1.2)
u · ∇k = div (νD(k)∇k) + νT (k)|D(u)|2 + P(u, k) − ε(k) in Ω,(1.3)
u = 0 and k = 0 on ∂Ω,(1.4)

where Ω is a bounded domain of Rd, d ≥ 2, with its boundary denoted by ∂Ω.
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2 H.B. DE OLIVEIRA AND A. PAIVA

In the scope of turbulent flows through porous media, the porous domain Ω is the so-called matrix or frame and it is
assumed to be rigid, fixed, isotropic and saturated by an incompressible fluid. The velocity vector field u, the pressure
p and the external forces field g are, in fact, averages that result by the application of double averaging concepts
(see e.g. [13]). The averaged tensor D(u) is the symmetric part of the averaged gradient ∇u, the positive constant ν
is the kinematic viscosity and expresses the ratio of the internal forces in the fluid, called dynamic viscosity, to the
mass density ρ, assumed to be constant and positive. It should be noted that (in the scope of porous media) all the
terms in the momentum equation (1.2) should come affected by the porosity of the medium, say φ, which is obtained
by spatial averaging the characteristic function of the fluid phase, and therefore may depend on the space variable,
and ranging in the interval (0, 1) (see e.g. [13]). Similarly to what we assumed that other properties of the fluid are
constant, such as kinematic viscosity and density, in this work we assume the porosity is also constant. The feedback
term f(u), that describes the resistance made by the rigid matrix of the porous medium to the flow, is characterized by
the Darcy-Forchheimer law,

(1.5) F(u) = cDau + cF |u|u,

where cDa and cF are the Darcy and Forchheimer coefficients, positive constants that are experimentally determined.
The scalar function k is an unknown of the problem that characterizes the energy of turbulence in the flow, and therefore
it is usually called turbulent kinetic energy (TKE). The rate of dissipation of the TKE is described, in the model, by
the function ε which is denoted by dissipation of the TKE, or, briefly, turbulent dissipation. The scalar function νT

is the (Boussinesq) turbulent viscosity, or eddy viscosity, that, according to Prandtl’s hypothesis (see e.g. [7]), may
depend on k and on ε, whereas νD is the turbulent diffusion and may also depend on k and on ε (see e.g. [15]). The
emergence of the quantity ε in the model, would led us to derive an equation for the transport of this function in order
to close the model. However, the consideration of one-equation models, that we assume in this work, is acceptable
in the sense that the equation for ε may be discarded by prescribing an appropriate length scale. Consequently the
turbulent viscosity νT and the turbulent diffusion νD are assumed to depend only on k, and, due to Prandtl’s hypothesis,
the turbulent dissipation ε depends only on k, being considered, in most studies, the Launder-Spalding hypothesis, i.e.
that ε is of the order of k

3
2 . The additional term P(u, k) in equation (1.3), that appears as an output of the averaging

process, is a production term of turbulent kinetic energy that gives account of the solids inside the fluid and is distinct
for each model [16, 21]. In fact, we have

P(u, k) ≡ P(u) := CNK |u|3, for the model [16](1.6)
P(u, k) := CPL|u| k, for the model [21],(1.7)

where CNK and CPL are positive constants that are experimentally determined in each model.

Problem (1.1)-(1.4) is very general and it encompasses other situations of turbulence modelling not directly related
with porous media. In fact, this problem can be used to model turbulent flows in a rotating frame, where the feedback
term f(u) accounts for the Coriolis acceleration and, in that case, the production term P(u, k) is zero. The problem
(1.1)-(1.4) may also be adapted to study turbulent flows controlled by a given magnetic field, where, in that case,
the feedback term f(u) accounts for the Lorentz force, a term where the Navier-Stokes equations are coupled to
Maxwell’s equations and Ohm’s law (see [20] and the references cited therein). In particular, by taking f(u) = 0,
P(u, k) = 0 and assuming the turbulent dissipation ε(k) is of the order of k

3
2 , we recover the steady version of the

one-equation turbulent k–epsilon model (see e.g. [7, 15]). One-equation problems of the turbulent k–epsilon model
have been investigated during the last 20 years, although important questions, as the 3-d transient problem, or the case
of real turbulent viscosity and turbulent diffusion functions, remain open. For questions of existence, uniqueness and
regularity of the solutions, related to the problem (1.1)-(1.4) with f(u) = 0 and P(u, k) = 0, we address the reader to
the works [9, 10, 11, 12, 14, 18].

The mathematical analysis of the problem (1.1)-(1.4) has started, to our best knowledge, in the work [19], and in [20]
it was proved the existence of weak solutions under suitable growth conditions on the feedback terms f(u), ε(k) and
P(u, k). In [20] we also have proved a uniqueness result for this problem under usual smallness conditions on the
problem data, but with restrictive conditions on the integrability of the gradient solutions.

This article is organized as follows. In the current Section 1 we made the introduction to our work and in Section 2 we
define the notion of solutions to the problem (1.1)-(1.4) we are interested in. The purposes of this paper are addressed
still in Section 2, but the main result, Theorem 3.1, is presented in Section 3. Great part of the paper is dedicated to
prove Theorem 3.1 whose proof starts in Section 3 and is carried out then in Sections 4 and 5.
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2. Weak formulation of the problem

In order to define the notion of a weak solution to the problem (1.1)-(1.4), let us introduce the following function
spaces largely used in the mathematical analysis of fluid problems,

V := {v ∈ C∞0 (Ω) : divv = 0},

H := closure ofV in L2(Ω),
V := closure ofV in H1(Ω).

By V′ we shall denote the dual of the space V. In the mathematical treatment of the turbulent problem (1.1)-(1.4),
there is a set of usual assumptions that although do not follow from the real situation they are physically admissible,

f : Ω ×Rd → Rd is a Carathéodory function,(2.1)
ε, νT , νD : Ω ×R→ R are Carathéodory functions,(2.2)
P : Ω ×Rd ×R→ R is a Carathéodory function.(2.3)

Observe that, in view of these assumptions, we are considering the possibility of some, or even all, of these functions
might depend on the space variables. In particular, assumption (2.2) fits with turbulent dissipation, turbulent viscosity
and turbulent diffusion functions involved in realistic models (see e.g. [7, 15, 20]).

There is another set of assumptions that impose some restrictions on the physics of the problem, but are mathematically
needed. We assume the boundedness of both turbulent viscosity and turbulent diffusion,

(2.4) |νT (x, k)| ≤ CT , |νD(x, k)| ≤ CD for all k ∈ R and a.a. x ∈ Ω,

for some positive constants CT and CD.

We are now in conditions to present a notion of weak solution to the problem (1.1)-(1.4) we are interested in this work.

Definition 2.1. Let the conditions (2.1)-(2.3) and (2.4) be fulfilled and assume that g ∈ V′. We say a pair (u, k) is a
weak solution to the problem (1.1)-(1.4), if:

(1) u ∈ V and for every v ∈ V ∩ L∞(Ω) there hold f(x,u) · v ∈ L1(Ω) and

(2.5)
ˆ

Ω

(u · ∇)u · v dx +

ˆ
Ω

(ν + νT (x, k)) D(u) : ∇v dx +

ˆ
Ω

f(x,u) · v dx =

ˆ
Ω

g · v dx;

(2) k ∈W1,q
0 (Ω), with 2d

d+2 ≤ q < d′, and for every ϕ ∈W1,q′

0 (Ω) there hold ε(x, k)ϕ, P(x,u, k)ϕ ∈ L1(Ω) and

(2.6)
ˆ

Ω

(u · ∇k)ϕ dx +

ˆ
Ω

νD(x, k)∇k · ∇ϕ dx +

ˆ
Ω

ε(x, k)ϕ dx =

ˆ
Ω

νT (x, k)|D(u)|2ϕ dx +

ˆ
Ω

P(x,u, k)ϕ dx;

(3) k ≥ 0 and ε(x, k) ≥ 0 a.e. in Ω.

Remark 2.1. Note that condition 2d
d+2 ≤ q < d′ in (2) of the above definition, is needed to control the first integral

term of (2.6). In fact, to hold the boundedness of this term is needed that W1,q
0 (Ω) ↪→ L2(Ω) and W1,q′ (Ω) ↪→ L∞(Ω),

which in turn are valid, respectively for q ≥ 2d
d+2 and q < d′, due to Sobolev imbeddings. In particular, the need of

q < d′ is of the utmost importance to control the fourth integral term of (2.6) when u merely belongs to V.

Remark 2.2. The need of the test function v of (2.6) to be in L∞(Ω) is to assure that f(x,u) · v ∈ L1(Ω) if we solely
have f(x,u) ∈ L1(Ω). The same happens for the test function ϕ of (2.6) in order to have ε(x, k)ϕ ∈ L1(Ω) if solely
ε(x, k) ∈ L1(Ω). But, in this case, it is enough to have ϕ ∈W1,q′

0 (Ω), because, due to the range of the considered q and
as observed in the precedent remark, we have W1,q′ (Ω) ↪→ L∞(Ω). The application of this remark will be clear later
on at Sections 5.2 and 5.3.

To simplify the exposition, we assume, in the rest of the work, that the general space dimension d satisfies to

2 ≤ d ≤ 4.
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In [20, Theorem 3.1] we have proved the existence of weak solutions to the problem (1.1)-(1.4) under the following
growth conditions on the feedback forces field and on the turbulent dissipation function,

|f(x,u)| ≤ C f |u|α for 0 ≤ α ≤
d + 2
d − 2

if d , 2, or for any α ≥ 0 if d = 2,(2.7)

|ε(x, k)| ≤ Cε|k|θ for 0 ≤ θ <
d

d − 2
if d , 2, or for any θ ≥ 0 if d = 2(2.8)

for a.a. x ∈ Ω and for some nonnegative constants C f and Cε. In this work we will consider the case when the
feedbacks f(x,u) and ε(x, k) are strong nonlinearities, i.e. when no upper restrictions on the growth of f(x,u) with
respect to u, and of ε(x, k) with respect to k, such as (2.7)-(2.8), are required.

As in [20], we shall assume on the production term P(x,u, k) the possibilities arising in the applications aforemen-
tioned. We consider the cases of

(2.9) P(x,u, k) = π(x,u) or P(x,u, k) = $(x,u)k,

where, accordingly to (2.3),

(2.10) π, $ : Ω ×Rd → R are Carathéodory functions.

If P(x,u, k) = π(x,u), we assume the existence of a nonnegative constant Cπ such that

(2.11) |π(x,u)| ≤ Cπ|u|β for 0 ≤ β ≤
d + 2
d − 2

if d , 2, or for any β ≥ 0 if d = 2,

for a.a. x ∈ Ω, whereas for P(x,u, k) = $(x,u)k, we assume the existence of a positive constant C$ such that

(2.12) |$(x,u)| ≤ C$|u|β for 0 ≤ β <
4

d − 2
if d , 2, or for any β ≥ 0 if d = 2,

for a.a. x ∈ Ω.

Remark 2.3. Conditions (2.11) and (2.12) generalize the models [16, 21] to encompass other situations of real-
world turbulent flows (see [20] and the references cited therein). However and only for mathematical interest we may
generalize even more these conditions as follows,

(2.13) P(x,u, k) =


$(x,u)k2σ+1 if σ > − 1

2

π(x,u) if σ = − 1
2

for π(x,u) satisfying to (2.11) and for $(x,u) satisfying to

|$(x,u)| ≤ C$|u|β for β + 2σ <
4

d − 2
and β ≥ 0 if d , 2,

or for any β ≥ 0 if d = 2,
(2.14)

for a.a. x ∈ Ω. With not so difficulty changes in the proofs, the result of this work still holds as long as (2.11) and
(2.14) hold and − 1

2 ≤ σ ≤ 0 in (2.13).

As in [20], and in order to be physically realistic with the turbulent models [16, 21], we need also to assume that

(2.15) π(x,u) ≥ 0 and $(x,u) ≥ 0 for all u ∈ Rd and for a.a x ∈ Ω.

On the feedback functions that account for the extra forcing term and for the turbulent dissipation, we assume the
following sign conditions which in fact follow from the physics of the problem,

f(x,u) · u ≥ 0 for all u ∈ Rd and for a.a. x ∈ Ω,(2.16)
ε(x, k) k ≥ 0 for all k ∈ R and for a.a. x ∈ Ω.(2.17)

Note that conditions (2.16)-(2.17) are satisfied by any feedback forces field and by any turbulent dissipation function
used in the applications mentioned above (see [20] and the references cited therein). On the other hand, k ≥ 0 in the
physical situation, and the best known expressions for turbulent dissipation, turbulent viscosity and turbulent diffusion
functions are given by the Prandtl model, when giving, for instance, by the following expressions

(2.18) ε(x, k) =
k
√

k
l(x)

, νT (x, k) = C1l(x)
√

k, νD(x, k) = µe + C2l(x)
√

k, l , 0, k ≥ 0,
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where µe is an effective (dynamic) viscosity, C1, C2 are dimensionless constants and l : Ω → R is the mixing
length function which is usually assumed to satisfy l(x) ≥ l0 for a.a. x ∈ Ω and for some positive constant l0 (see
e.g. [7, 15, 18]). Motivated by this, we assume that our general turbulent dissipation function can be written in such a
way that

(2.19) ε(x, k) = ke(x, k) where e : Ω ×R→ R is a Carathéodory function.

Gathering the information of (2.17) and (2.19) it follows immediately that

(2.20) e(x, k) ≥ 0 for all k ∈ R and for a.a. x ∈ Ω .

Note that, in the particular case of the Prandtl formula (2.18)1, the function e(x, k) =
√

k
l(x) satisfies to (2.20) whenever

k ≥ 0 and l(x) ≥ l0 for a.a. x ∈ Ω and for some positive constant l0. Observe that in this work we are considering a
much more general situation in which the function e(x, k) is assumed to be a strong nonlinearity.

There is another set of assumptions, already touched on at (2.4), that are mathematically needed,

0 ≤ νT (x, k) ≤ CT for all k ∈ R and for a.a. x ∈ Ω, CT ∈ R
+,(2.21)

0 < cD ≤ νD(x, k) ≤ CD for all k ∈ R and for a.a. x ∈ Ω, cD,CD ∈ R
+.(2.22)

To avoid the trivial solution k = 0, we shall assume in the sequel, and in addition to (2.21), that

(2.23) νT (x, k) , 0 when k = 0 .

Because we are considering a very general model that encompasses other situations of turbulence modelling, the
novelty of this work is threefold. On one hand, our result will improve the existence theory for the usual turbulent
k−epsilon model, i.e. when we consider f(x,u) = 0 and P(x,u, k) = 0 in the model problem (1.1)-(1.4), but with no
upper restriction on the growth of ε(x, k) with respect to k. In this case, our work improves the results known in the
literature for the steady case of the turbulent k−epsilon model. On the other hand, our work will also apply when
f(x,u) , 0 and P(x,u, k) = 0, which is characteristic, for instance, of modelling turbulent flows in a rotating frame. A
third and main application of our work, is for the case of both non-zero f(x,u) and P(x,u, k), characteristic of turbulent
flows through porous media.

3. The main result

In this section, we state the existence result on which we are concerned in this work and we start here with the
approach to prove it. For the sake of simplifying the writing, from now on, we shall no longer write the dependence of
the Carathéodory functions (2.1)-(2.3) and (2.19) on the space variable x. As we have mentioned before, the novelty
of this work relies on the consideration of the feedback terms f(x,u) and ε(x, k) as strong nonlinearities. For these
terms, we only assume that

∃ τ > 0 : |∠(f(u),u)| <
(
π

2
− τ,

π

2
+ τ

)
∀ u : |u| ≥ L, ∀ L > 0,(3.1)

HL ∈ L1(Ω) ∀ L > 0, where HL := sup
|u|≤L
|f(u)|,(3.2)

GM ∈ L1(Ω) ∀ M > 0, where GM := sup
|k|≤M
|ε(k)|.(3.3)

Theorem 3.1. Let Ω be a bounded domain of Rd, 2 ≤ d ≤ 4, with a Lipschitz-continuous boundary ∂Ω. Assume all
the conditions (2.1)-(2.3), (2.9)-(2.10), (2.15), (2.16)-(2.17), (2.19)-(2.20), (2.21)-(2.23) and

(3.4) g ∈ L2(Ω).

In addition, assume that (3.1)-(3.3) hold and one of the following conditions is satisfied:

(1) P(u, k) = π(u) a.e. in Ω and (2.11) holds;
(2) P(u, k) = $(u)k a.e. in Ω, (2.12) holds, and

(3.5) cD > C
(
‖g‖L2(Ω)

ν

)β
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for the positive constant C defined at (4.18), and where ν is the positive constant that accounts for the kine-
matic viscosity.

Then there exists, at least, a weak solution to the problem (1.1)-(1.4). Moreover f(u) ∈ L1(Ω) and f(u)·u, ε(k), ε(k)k ∈
L1(Ω).

Remark 3.1. Note that conditions (3.1)-(3.3), together with conditions (2.16)-(2.17), do not imply any upper restric-
tions on the growth of f(u) with respect to u nor of ε(k) with respect to k. This is why, sometimes, this type of feedback
terms are called as strong nonlinearities (see [2, 3, 4, 6]). We will handle these feedback terms by using a truncation
argument whose application needs conditions (3.2)-(3.3) to control the behaviour of f(u) and of ε(k) for large values
of |u| and of k, respectively. On the other hand, condition (3.1), on the angle determined by the vectors f(u) and u,
denoted there by ∠(f(u),u), says that f(u) and u cannot be nearly orthogonal for large values of |u|. This condition is
particularly useful to avoid the occurrence of feedbacks f(u) of the following Coriolis-Pohozhaev type

f(u, v) = e|(u,v)|2 (−v, u) , u = (u, v) (d = 2)

for which (2.16) is satisfied but f(u) < L1(Ω).

The proof of Theorem 3.1 is still started in the current section and it will be carried out through the rest of the paper, in
Sections 4 and 5. But first we observe that several technical difficulties arise. Since we do not have any upper restriction
on the growth of f(u) with respect to u, we will use a truncation argument in the spirit of [2, 3] (see also [4, 6]). By the
same reason, we will use a truncation argument in the term ε(k) in the spirit of [4] (see also [6]). On the other hand,
because |D(u)|2 is only in L1(Ω), we will use a regularization of this term in the spirit of [20] (see also [17]).

Proof. (of Theorem 3.1) We start by considering, for each n ∈ N, the following truncated and regularized problem

div u = 0 in Ω,(3.6)
(u · ∇)u = g − fn(u) − ∇p + div ((ν + νT (k)) D(u)) in Ω,(3.7)

u · ∇k = div (νD(k)∇k) + νT (k)Rn

(
|D(u)|2

)
− εn(k) + P(u, k) in Ω,(3.8)

u = 0 and k = 0 on ∂Ω,(3.9)

where fn(u) is the n-radial truncation of f(u),

(3.10) fn(u) :=
{

f(u) if |u| ≤ n,
f(un) if |u| = ρ > n,

with un being such that |un| = n, εn(k) is the n-truncation of ε(k)

(3.11) εn(k) :=
{
ε(k) if |k| ≤ n,
ε(kn) if |k| = % > n,

where kn satisfies to |kn| = n. We recall that, due to the assumptions (2.1)-(2.2) and to the definitions (3.10)-(3.11), the
following well-known facts hold (see e.g. [24, Lemma 3.4.3] and [6, Proposition 2]),

fn is a continuous function on u and ∃ Cfn > 0 : |fn(u)| ≤ Cfn ∀ u ∈ Rd,(3.12)
εn is a continuous function on k and ∃ Cεn > 0 : |εn(k)| ≤ Cεn ∀ k ∈ R.(3.13)

In (3.8), Rn(h) denotes a truncation of the term h such that

(3.14) Rn(h) :=
h

1 + 1
n h
, where h = |D(u)|2.

Observe that the regularization Rn(h) satisfies to

(3.15) Rn(h) ≤ min {h, n} ∀ h ≥ 0.

In the conditions of Theorem 3.1, we say that a pair (u, k) is a weak solution to the problem (3.6)-(3.9) if, for each
n ∈ N,

(1’) u ∈ V and for every v ∈ V ∩ Ld(Ω) there holds

(3.16)
ˆ

Ω

(u · ∇)u · v dx +

ˆ
Ω

(ν + νT (k)) D(u) : ∇v dx +

ˆ
Ω

fn(u) · v dx =

ˆ
Ω

g · v dx;
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(2’) k ∈ H1
0(Ω) and for every ϕ ∈ H1

0(Ω) ∩ Ld(Ω) there holds

(3.17)
ˆ

Ω

(u · ∇k)ϕ dx +

ˆ
Ω

νD(k)∇k · ∇ϕ dx +

ˆ
Ω

εn(k)ϕ dx =

ˆ
Ω

νT (k)Rn

(
|D(u)|2

)
ϕ dx +

ˆ
Ω

P(u, k)ϕ dx;

(3’) k ≥ 0 and εn(k) ≥ 0 a.e. in Ω.

Remark 3.2. Note that in the case of 2 ≤ d ≤ 4, we are considering in this work, the Sobolev imbedding H1
0(Ω) ↪→

Ld(Ω) holds and therefore it is only needed to require the test functions of (3.16) are in the function space V. Analo-
gously the test functions of (3.17) are only required to be in the function space H1

0(Ω).

Proposition 3.1. Let the conditions of Theorem 3.1 be fulfilled. Then (for each n ∈ N) there exists, at least, a weak
solution to the problem (3.6)-(3.9) satisfying to (1’)-(3’) above.

In the sequel and in order to optimize some estimates that are needed, we will make use of the best constants for the
Poincaré and Sobolev inequalities. We start by recalling that the principal (positive) eigenvalue, say λP(d), for the
Laplacian problem

(3.18)
{

∆φ = −λφ in Ω

φ = 0 on ∂Ω

is attained in such a way that 0 < λP(d) < ∞. Moreover, λP(d) is the best possible constant in the Poincaré’s inequality,

(3.19) ‖φ‖2L2(Ω) ≤ λP(d)‖∇φ‖2L2(Ω) ∀ φ ∈ H1
0(Ω).

In order to simplify the exposition, in the sequel we rename the positive constant λP(d) considered in (3.19) as λP(d)2.
The extension of (3.19) to a general Lr norm, making use or not of the Sobolev inequality, was studied by many
authors. In particular, for r = 2, the sharpest constant of the Sobolev inequality, say λ(2, d), is attained in such a way
that 0 < λ(2, d) < ∞ and

(3.20) ‖φ‖L2∗ (Ω) ≤ λ(2, d)‖∇φ‖L2(Ω) ∀ φ ∈ H1
0(Ω), ∀d ≥ 2 ,

where 2∗ denotes the Sobolev conjugate of 2, i.e. 2∗ = 2d
d−2 if d , 2 and 2∗ is any real in the interval [1,∞) otherwise.

See [20] and the references cited therein for a better understanding. In the sequel we shall use capital letters, ΛP(d)
and Λ(2, d) for the best constants of the vectorial versions of (3.19) and (3.20).

The proof of Proposition 3.1 is organized in several steps in the next section.

4. Proof of Proposition 3.1

4.1. Existence of approximate solutions. Let {(vi, υi)}∞i=1 be a set of non-trivial solutions (vi, υi), associated to the
eigenvalues Λi > 0 and λi > 0, i = 1, 2, ..., of the following spectral problems,

∑
|α|=1

ˆ
Ω

Dαvi · Dαw dx = Λi

ˆ
Ω

vi · w dx ∀ w ∈ V,

vi ∈ V,
∑
|α|=1

ˆ
Ω

DαυiDαω dx = λi

ˆ
Ω

υiω dx ∀ ω ∈ V,

υi ∈ V.

The family {vi}
∞
i=1 is orthogonal in V and can be chosen as being orthonormal in H (see e.g. [23]), whereas the family

{υi}
∞
i=1 is orthogonal in V and can be chosen as being orthonormal in L2(Ω) (see e.g. [8]). Given j ∈ N, let us consider

the correspondingly j-dimensional spaces V j and V j spanned by v1, v2, ..., v j and by υ1, υ2, ..., υ j, respectively. For
each j ∈ N, we search for an approximate solution (u j, k j) of (3.16)-(3.17) in the form

u j =

j∑
i=1

ci jvi, ci j ∈ R, vi ∈ V j,(4.1)

k j =

j∑
i=1

di jυi, di j ∈ R, υi ∈ V j .(4.2)
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These functions are found by solving the following system of 2 j nonlinear algebraic equations, with respect to the 2 j
unknowns c1 j, c2 j, . . . , c j j and d1 j, d2 j, . . . , d j j obtained from (3.16) and from (3.17), respectively:ˆ

Ω

((u j · ∇)u j) · vi dx +

ˆ
Ω

(ν + νT (k j))D(u j) : ∇vi dx +

ˆ
Ω

fn(u j) · vi dx

=

ˆ
Ω

g · vi dx for i = 1, . . . , j;
(4.3)

ˆ
Ω

(u j · ∇k j)υi dx +

ˆ
Ω

νD(k j)∇k j · ∇υi dx +

ˆ
Ω

εn(k j)υi dx

=

ˆ
Ω

νT (k j)Rn

(
|D(u j)|2

)
υi dx +

ˆ
Ω

P(u j, k j)υi dx, i = 1, . . . , j.
(4.4)

Due to the assumptions (2.16)-(2.17), (2.21)-(2.22) and (3.4), we can use a variant of Brower’s theorem (see e.g. [23,
Lemma II.1.4]) to prove the existence of, at least, a solution to the system formed by (4.1)-(4.2) and (4.3)-(4.4). To do
it so, we consider a function P, from V j × V j into itself defined in such a way that

P(v, υ) · (v, υ) :=ˆ
Ω

((v · ∇)v) · v dx +

ˆ
Ω

(ν + νT (υ))D(v) : ∇v dx +

ˆ
Ω

fn(v) · v dx −
ˆ

Ω

g · v dx+

ˆ
Ω

(v · ∇υ)υ dx +

ˆ
Ω

νD(υ)|∇υ|2 dx +

ˆ
Ω

εn(υ)υ dx −
ˆ

Ω

νT (υ)Rn

(
|D(v)|2

)
υ dx −

ˆ
Ω

P(v, υ)υ dx

:= I1 + · · · − I4 + · · · − I8 − I9

(4.5)

for all (v, υ) ∈ V j ×V j and where the scalar product is induced by V×V . Evidently, P so defined is continuous. Since
v ∈ V j implies div v = 0, we have I1 = 0 and I5 = 0. On the other hand, arguing as we did in [20, Section 4.1], it can
be proved that

I2 ≥ νC2
K‖∇v‖2L2(Ω) and I6 ≥ cD‖∇υ‖

2
L2(Ω),

I4 =

ˆ
Ω

g · v dx ≤ ΛP(d)‖g‖L2(Ω)‖∇v‖L2(Ω),

I8 =

ˆ
Ω

νT (υ)Rn

(
|D(v)|2

)
υ dx ≤ CT n‖υ‖L1(Ω) ≤ CT n

√
Ld(Ω)λ(2, d)‖∇υ‖L2(Ω),

where CK is the Korn inequality’s constant and Ld(Ω) denotes the d−Lebesgue measure of Ω.

Now, let us show that
I3 ≥ 0 and I7 ≥ 0

by proving that, in view of (2.16)-(2.17), we have

fn(u) · u ≥ 0 ∀ u ∈ Rd,(4.6)
εn(k)k ≥ 0 ∀ k ∈ R(4.7)

a.e. in Ω. To prove (4.6), we use generalized spherical coordinates (ρ, θ1, . . . , θd) to write u = ρw, where

w1 := cos(θ1)
w2 := sin(θ1) cos(θ2)
w3 := sin(θ1) sin(θ2) cos(θ3)
...

wd−1 := sin(θ1) · · · sin(θd−2) cos(θd−1)
wd := sin(θ1) · · · sin(θd−2) sin(θd−1) .

Using the definition of the truncation (see (3.10)), we have, due to the assumption (2.16), that fn(u) · u = f(u) · u ≥ 0 if
|u| ≤ n. If |u| = ρ > n, then fn(u) · u = ρ f(un) · w, and the later is nonnegative if f(un) · w ≥ 0. In fact, if f(un) · w < 0,
then we also would have f(un) · un = nf(un) · w < 0 which contradicts the assumption (2.16). As for (4.7), it is a
consequence of (2.17) and (3.11). In fact, if |k| ≤ n then εn(k)k = ε(k)k ≥ 0, by (2.17) and (3.11). If |k| > n then
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εn(k)k = ε(kn)kn × k
kn due to (3.11). In this case, we observe, also from (3.11), that k and kn are both nonzero and have

the same sign. As a consequence of this and of (2.17), we readily have εn(k)k ≥ 0 if |k| > n.

4.1.1. If P(u, k) = π(u) a.e. in Ω, we argue as we did in [20, Section 4.1.1], in particular by using (2.11) together
with Hölder’s inequality and both scalar and vectorial versions of Sobolev’s inequality (3.20), to show that

(4.8) I9 =

ˆ
Ω

π(v)υ dx ≤ Cπ λ(2, d)Λ(2, d)β‖∇v‖βL2(Ω)‖∇υ‖L2(Ω).

Gathering the information of the estimates of I1, . . . , I9 as we did in [20, Section 4.1.1], it follows from (4.5) that
P(v, υ) · (v, υ) > 0 for ‖v‖V = ρ and ‖υ‖V = ς, and where ρ and ς are chosen in such a way that

ρ >
ΛP(d)
νC2

K

‖g‖L2(Ω) and ς >
1

cD

(
CT n

√
Ld(Ω)λ(2, d) + Cπ λ(2, d)Λ(2, d)βρβ

)
.

4.1.2. If P(u, k) = $(u)k a.e. in Ω, we argue as we did in [20, Section 4.1.2] to show that

(4.9) I9 =

ˆ
Ω

$(v) υ2 dx ≤ C$ λ(2, d)2Λ(2, d)β‖∇v‖βL2(Ω)‖∇υ‖
2
L2(Ω),

by the application of (2.12) together with Hölder’s inequality and both scalar and vectorial versions of Sobolev’s
inequality (3.20). In this case, gathering the information of the estimates of I1, . . . , I9, it can be proved from (4.5) that
P(v, υ) · (v, υ) > 0 for ‖v‖V = ρ and ‖υ‖V = ς, and ρ and ς chosen in such a way that

ρ >
ΛP(d)
νC2

K

‖g‖L2(Ω) and ς >
CT n

√
Ld(Ω)λ(2, d)

cD −C$ λ(2, d)2Λ(2, d)βρβ
and ς > 0.

The hypotheses of [23, Lemma II.1.4] are thus verified and therefore there exists a solution (c j,d j), with c j :=
(c1 j, c2 j, . . . , c j j) and d j := (d1 j, d2 j, . . . , d j j) to the system (4.1)-(4.4).

4.2. A priori estimates. Multiplying (4.3) by ci j, adding up the resulting equation between i = 1 and i = j, and
observing that the convective integral term vanishes due to the fact that div u j = 0, we obtainˆ

Ω

(ν + νT (k j))D(u j) : ∇u j dx +

ˆ
Ω

fn(u j) · u j dx =

ˆ
Ω

g · u j dx.

Using the symmetry of D(u j) together with the sign property (4.6) and with the assumption (2.21), we get

ν

ˆ
Ω

|D(u j)|2 dx ≤
ˆ

Ω

g · u j dx.

Then, arguing as we did in [20, Section 4.2], it can be proved that

(4.10) ‖∇u j‖L2(Ω) ≤ C, C = C(ν, d,Ω, ‖g‖L2(Ω)),

where the positive constant C is independent of j. As a consequence of (4.10), we have, up to some subsequences,

u j → u weakly in H1
0(Ω), as j→ ∞,(4.11)

u j → u strongly in Lγ(Ω), as j→ ∞, for γ ∈ [1, 2∗),(4.12)
u j → u a.e. in Ω, as j→ ∞.(4.13)

In particular, a refinement of the estimate (4.10) allows us to write

(4.14) ‖∇u j‖L2(Ω) ≤
ΛP(d)
νC2

K

‖g‖L2(Ω),

and, observing the weak convergence (4.11), we obtain, by passing to the limit inf in (4.14), that

(4.15) ‖∇u‖L2(Ω) ≤
ΛP(d)
νC2

K

‖g‖L2(Ω).

We will use this estimate later on, for the analysis of the equation for k, when the production term represented by the
function P depend on both u and k.



10 H.B. DE OLIVEIRA AND A. PAIVA

Then we multiply (4.4) by di j, we add up the resulting equation between i = 1 and i = j and we use the fact that
u j ∈ V j implies div u j = 0 and whence the first integral term vanishes. Next we use the sign property (4.7) and we
obtain, ˆ

Ω

νD(k j)|∇k j|
2 dx ≤

ˆ
Ω

νT (k j)Rn

(
|D(u j)|2

)
k j dx +

ˆ
Ω

P(u j, k j)k j dx.

4.2.1. If P(u, k) = π(u) a.e. in Ω, we proceed as in [20, Section 4.2.1] to obtain

(4.16) ‖∇k j‖
2
L2(Ω) ≤ C, C = C(Cπ, cD,CT , n,Ω, d, ν, β, ‖g‖L2(Ω)),

for a positive constant C not depending on j.

4.2.2. If P(u, k) = $(u)k a.e. in Ω, we argue as we did in [20, Section 4.2.2] to show that

(4.17) ‖∇k j‖L2(Ω) ≤ CT n
√
Ld(Ω)λ(2, d)

cD −C$ λ(2, d)2Λ(2, d)β
ΛP(d)
νC2

K

β ‖g‖βL2(Ω)

−1

.

We can readily see that the right-hand side of (4.17) is a positive constant independent of j as long as (3.5) holds with

(4.18) C := C$ λ(2, d)2Λ(2, d)βC−2β
K ΛP(d)β.

As a consequence of (4.16) or (4.17), it follows (up to some subsequences) that

k j → k weakly in H1
0(Ω), as j→ ∞,(4.19)

k j → k strongly in Lγ(Ω), as j→ ∞, for γ ∈ [1, 2∗),(4.20)
k j → k a.e. in Ω, as j→ ∞.(4.21)

4.3. Passing to the limit j → ∞. We start by passing to the limit j → ∞ the integral equality (4.3). Arguing as we
did in [20, Section 4.2], it can be proved from (4.10)-(4.13) thatˆ

Ω

((u j · ∇)u j) · vi dx→
ˆ

Ω

((u · ∇)u) · vi dx, as j→ ∞, for all i ≥ 1,(4.22)
ˆ

Ω

(ν + νT (k j))D(u j) : ∇vi dx→
ˆ

Ω

(ν + νT (k))D(u) : ∇vi dx, as j→ ∞, for all i ≥ 1.(4.23)

The only difference of (4.3) from the problem studied in [20] lies in the convergence of the third term, because in the
current work we consider a strong nonlinearity f(u) that in this part of the proof is truncated as fn(u). But, let us see
that this convergence does not offer any difficult as well. In what follows, we just consider the case d ≥ 3 (the case
d = 2 is simpler). Using the first part of (3.12), we have by virtue of (4.13) that

(4.24) fn(u j)→ fn(u) a.e. in Ω, as j→ ∞.

On the other hand, by the second part of (3.12), we have

(4.25) ‖fn(u j)‖L 2d
d+2 (Ω)

≤ Cfn (Ld(Ω))
d+2
2d .

Owing to (4.24) and (4.25), we obtain

(4.26) f(u j)→ f(u) weakly in L
2d

d+2 (Ω), as j→ ∞,

By the Sobolev imbedding, vi ∈ H1
0(Ω) ↪→ L 2d

d−2 (Ω) and since
(

2d
d+2

)−1
+

(
2d

d−2

)−1
= 1, from (4.26), we have

(4.27)
ˆ

Ω

fn(u j) · vi dx→
ˆ

Ω

fn(u) · vi dx, as j→ ∞, for all i ≥ 1.

Aside the convergence (4.27), we should mention here that the proof of (4.23) in [20] relies on the convergence

(4.28) (ν + νT (k j))∇vi → (ν + νT (k))∇vi strongly in L2(Ω), as j→ ∞,

which in turn can be proved by using (2.2), (2.21) and (4.21) together with Lebesgue’s dominated convergence theo-
rem.
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The convergences (4.22), (4.23) and (4.27) imply that we can pass to the limit j→ ∞ in the approximate system (4.3)
and thus we obtain

ˆ
Ω

((u · ∇)u) · vi dx +

ˆ
Ω

(ν + νT (k))D(u) : ∇vi dx +

ˆ
Ω

fn(u) · vi dx

=

ˆ
Ω

g · vi dx
(4.29)

for all i ≥ 1. Using the linearity of (4.29) in vi and the density of the finite linear combinations of the system {vi}
∞
i=1 in

V, we deduce that (4.29) holds true in the whole space V, that is
ˆ

Ω

((u · ∇)u) · v dx +

ˆ
Ω

(ν + νT (k))D(u) : ∇v dx +

ˆ
Ω

fn(u) · v dx

=

ˆ
Ω

g · v dx
(4.30)

for all v ∈ V. This allows us to take v = u as a test function in (4.30), which yields

(4.31)
ˆ

Ω

(ν + νT (k))|D(u)|2 dx +

ˆ
Ω

fn(u) · u dx =

ˆ
Ω

g · u dx.

On the other hand, taking vi = u j in (4.3), we also have the equality

(4.32)
ˆ

Ω

(ν + νT (k j))|D(u j)|2 dx +

ˆ
Ω

fn(u j) · u j dx =

ˆ
Ω

g · u j dx.

In (4.31)-(4.32), we have used the facts that u and u j are solenoidal and D(u) and D(u j) are symmetric. Then, using
(4.31) and (4.32) together with (4.12), (4.20) and (4.27), we have

(4.33) lim
j→∞

ˆ
Ω

(ν + νT (k j))|D(u j)|2 dx =

ˆ
Ω

g · u dx −
ˆ

Ω

fn(u) · u dx =

ˆ
Ω

(ν + νT (k))|D(u)|2 dx.

On the other hand, arguing as we did for (4.23), we can prove that

(4.34) (ν + νT (k j))
1
2 D(u j)→ (ν + νT (k))

1
2 D(u) weakly in L2(Ω), as j→ ∞.

Combining (4.33) and (4.34), it yields

(4.35) (ν + νT (k j))
1
2 D(u j)→ (ν + νT (k))

1
2 D(u) strongly in L2(Ω), as j→ ∞.

Now, we observe that, in view of (2.21), we have
ˆ

Ω

|D(u j) − D(u)|2 dx ≤

1
ν

[ˆ
Ω

(ν + νT (k j))|D(u j)|2 dx − 2
ˆ

Ω

(ν + νT (k j))D(u j) : D(u) dx +

ˆ
Ω

(ν + νT (k j))|D(u)|2 dx
]
.

Then, using (4.35) in the first term, (4.34) in the second and reasoning, in the third term, as we did at (4.28), we can
prove that

(4.36) D(u j)→ D(u) strongly in L2(Ω), as j→ ∞.

Finally, by Riesz-Fisher’s theorem, we have, up to a subsequence,

(4.37) D(u j)→ D(u) a.e. in Ω, as j→ ∞.
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We will now pass to the limit j → ∞ the integral equality (4.4). Arguing in this part as we did in [20, Section 4.2], it
can be proved from (4.10)-(4.13), (4.16) or (4.17), and (4.19)-(4.21) thatˆ

Ω

(u j · ∇k j)υi dx→
ˆ

Ω

(u · ∇k)υi dx, as j→ ∞, for all i ≥ 1,(4.38)
ˆ

Ω

νD(k j)∇k j · ∇υi dx→
ˆ

Ω

νD(k)∇k · ∇υi dx, as j→ ∞, for all i ≥ 1,(4.39)
ˆ

Ω

νT (k j)Rn

(
|D(u j)|2

)
υi dx→

ˆ
Ω

νT (k)Rn

(
|D(u)|2

)
υi dx, as j→ ∞, for all i ≥ 1,(4.40)

ˆ
Ω

π(u j)υi dx→
ˆ

Ω

π(u)υi dx, as j→ ∞, for all i ≥ 1,(4.41)
ˆ

Ω

$(u j)k jυi dx→
ˆ

Ω

$(u)kυi dx, as j→ ∞, for all i ≥ 1.(4.42)

We only need to justify the convergence of the third term. Here again we just consider the case d ≥ 3 (the case d = 2
is simpler). Due to the assumption of the first part of (3.13), we have, as a consequence of (4.21), that

(4.43) εn(k j)→ εn(k) a.e. in Ω, as j→ ∞.

Using now the second part of (3.13), one gets

(4.44) ‖εn(k j)‖L 2d
d+2 (Ω)

≤ Cεn (Ld(Ω))
d+2
2d .

Owing to (4.43) and (4.44), we have

(4.45) εn(k j)→ εn(k) weakly in L
2d

d+2 (Ω), as j→ ∞.

Then, since υi ∈ H1
0(Ω) ↪→ L

2d
d−2 (Ω) and once that

(
2d

d+2

)−1
+

(
2d

d−2

)−1
= 1, we have, in view of (4.45), that

(4.46)
ˆ

Ω

εn(k j)υi dx→
ˆ

Ω

εn(k)υi dx, as j→ ∞, for all i ≥ 1.

The convergences (4.38), (4.39), (4.40), (4.46) and (4.41), or (4.42), assure that we can pass to the limit j→ ∞ in the
approximate system (4.4) to obtainˆ

Ω

(u · ∇k)υi dx +

ˆ
Ω

νD(k)∇k · ∇υi dx +

ˆ
Ω

εn(k)υi dx

=

ˆ
Ω

νT (k)Rn

(
|D(u)|2

)
υi dx +

ˆ
Ω

P(u, k) υi dx
(4.47)

for all i ≥ 1.

We have thus proved that, for each n ∈ N, there exists a weak solution (un, kn) ∈ V ×H1
0(Ω) to the problem (3.6)-(3.9)

and such that ˆ
Ω

(un · ∇)un · v dx +

ˆ
Ω

(ν + νT (kn))D(un) : ∇v dx +

ˆ
Ω

fn(un) · v dx

=

ˆ
Ω

g · v dx
(4.48)

and ˆ
Ω

(un · ∇kn)v dx +

ˆ
Ω

νD(kn)∇kn · ∇v dx +

ˆ
Ω

εn(kn)v dx

=

ˆ
Ω

νT (kn)Rn

(
|D(un)|2

)
v dx +

ˆ
Ω

P(un, kn) v dx
(4.49)

hold for all (v, v) ∈ V j × V j and all j ≥ 1. By linearity and density these relations hold for all (v, v) ∈ V × V, and by
continuity they hold for all (v, v) ∈ V × H1

0(Ω) due to the ranges of β set forth at (2.11)-(2.12).
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4.4. To show that kn ≥ 0 and εn(kn) ≥ 0. In this part of the proof we need to introduce the typical form of the
turbulent dissipation function used in the applications and that we have assumed in (2.19)-(2.20). Therefore, we
consider the integral equation (4.49) written in the formˆ

Ω

(un · ∇kn)v dx +

ˆ
Ω

νD(kn)∇kn · ∇v dx +

ˆ
Ω

en(kn)knv dx

=

ˆ
Ω

νT (kn)Rn

(
|D(un)|2

)
v dx +

ˆ
Ω

P(un, kn) v dx,
(4.50)

where

(4.51) en(k) :=
{

e(k) if |k| ≤ n,
e(kn) if |k| = % > n,

being kn such that |kn| = n. From (2.19)-(2.20) and (4.51), it readily follows that

(4.52) en(k) ≥ 0 for all k ∈ R and a.e. in Ω .

Observe that, in this particular case, (4.7) is immediately satisfied, because εn(k)k = en(k)k2 ≥ 0, due to (3.11), (4.51)
and (4.52)

Let us now consider a couple of functions (un, kn) ∈ V×H1
0(Ω) satisfying to (4.48) and (4.50). We start by decomposing

kn as kn = k+
n − k−n , where k+

n := max{0, kn} and k−n := −min{0, kn}. Since kn ∈ H1
0(Ω) implies that k−n ∈ H1

0(Ω), we can
take v = −k−n in (4.50),

−

ˆ
Ω

(un · ∇kn)k−n dx −
ˆ

Ω

νD(kn)∇kn · ∇k−n dx −
ˆ

Ω

en(kn)knk−n dx

= −

ˆ
Ω

νT (kn)Rn

(
|D(un)|2

)
k−n dx −

ˆ
Ω

P(un, kn)k−n dx.

Observing the properties of k+
n and k−n (see e.g. [7, p. 239]) and using the assumption (2.22) together with the fact that

un ∈ V implies div un = 0, we obtain

cD

ˆ
Ω

|∇k−n |
2 dx +

ˆ
Ω

en(kn)(k−n )2 dx ≤ −
ˆ

Ω

νT (kn)Rn

(
|D(un)|2

)
k−n dx −

ˆ
Ω

P(un, kn)k−n dx.

Then (4.52) together with the assumption (2.21) and with the fact that Rn

(
|D(un)|2

)
≥ 0 (see (3.14)), yield

(4.53) cD

ˆ
Ω

|∇k−n |
2 dx ≤ −

ˆ
Ω

P(un, kn)k−n dx.

Then, using (2.15) and (2.22), and proceeding as we did in [20, Sections 4.4.1-2], we obtain

(4.54) ‖∇k−n ‖
2
L2(Ω) ≤ 0

for either P(un, kn) = π(un) or P(un, kn) = $(un)kn a.e. in Ω. Note that, in the last case, conditions (2.12) and (3.5)
are of the utmost importance. Then, by the Sobolev imbedding, ‖k−n ‖

2
L2(Ω) ≤ 0, which proves that k−n = 0 a.e. in Ω and,

consequently, kn ≥ 0 a.e. in Ω.

Then, as a direct consequence of applying the sign property (4.7) together with the conclusion that kn ≥ 0 a.e. in Ω,
we have

(4.55) εn(kn) ≥ 0 a.e. in Ω.

The proof of Proposition 3.1 is now concluded.

5. End of the proof of Theorem 3.1

From Proposition 3.1, we know that, for each n ∈ N, there exists a weak solution (un, kn) ∈ V × H1
0(Ω) to the problem

(3.6)-(3.9) and such that (4.48)-(4.49) hold. The final part of the proof of Theorem 3.1 will be split into several parts
for the sake of comprehension.
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5.1. A priori estimates. We start by obtaining an estimate for un. Since the sought solutions and the test functions
are in the same function space, we can take v = un in (4.48) and we obtain, after we use the symmetry of D(un) and
the fact that divun = 0,

(5.1)
ˆ

Ω

(ν + νT (kn))|D(un)|2 dx +

ˆ
Ω

f(un) · un dx =

ˆ
Ω

g · un dx.

Proceeding as we did for (4.10) and (4.14), we obtain

(5.2) ‖∇un‖L2(Ω) ≤
C2

K

ν
ΛP(d)‖g‖L2(Ω).

Then, arguing as we did for (4.11)-(4.13) and in view of (5.2) and of the assumption (3.4), we have

un → u weakly in H1
0(Ω), as n→ ∞,

un → u strongly in Lγ(Ω), as n→ ∞, for γ ∈ [1, 2∗),(5.3)
un → u a.e. in Ω, as n→ ∞

To achieve an a priori estimate for kn, we consider the following special test function in the spirit of [20] (see also
[5, 17, 22]),

ϕ(kn) := 1 −
1

(1 + kn)δ
, with

(1 + δ)q
2 − q

≤ q∗,

and where δ is a positive constant such that W1,q′ (Ω) ↪→ C0,δ(Ω). These conditions on δ result that it must be q′ > d.
Observe that ϕ(kn) satisfies to

(5.4) 0 ≤ ϕ(kn) ≤ 1, ∇ϕ(kn) = δ
∇kn

(1 + kn)δ+1

and therefore ϕ(kn) ∈ H1
0(Ω). Thus we may take v = ϕ(kn) in (4.49) to getˆ

Ω

(un · ∇kn)ϕ(kn) dx +

ˆ
Ω

νD(kn)∇kn · ∇ϕ(kn) dx +

ˆ
Ω

εn(kn)ϕ(kn) dx

=

ˆ
Ω

νT (kn)Rn

(
|D(un)|2

)
ϕ(kn) dx +

ˆ
Ω

P(un, kn)ϕ(kn) dx,
(5.5)

where the first term vanishes due to (3.6),

(5.6)
ˆ

Ω

(un · ∇kn)ϕ(kn) dx =

ˆ
Ω

un · ∇Φ(kn) dx = 0, Φ(s) :=
ˆ s

0
ϕ(τ) dτ.

We observe that the third term of (5.5) is nonnegative due to (4.55) and to the fact that ϕ(kn) ≥ 0. As a consequence of
this and of (5.6), and attending to (3.15) and (5.4), and there observing that ϕ(kn) ≤ 1, we obtain

δ

ˆ
Ω

νD(kn)
|∇kn|

2

(1 + kn)1+δ
dx ≤

ˆ
Ω

νT (kn) |D(un)|2 dx +

ˆ
Ω

|P(un, kn)| dx.

Then, proceeding as we did in [20, Sections 5.1.1-2], we obtain

‖∇kn‖
q
Lq(Ω) ≤ C, C = C(ν, β, cD,CT ,Cπ, d, q,Ω, ‖g‖L2(Ω)) if P(u, k) = π(u) a.e. in Ω,(5.7)

‖∇kn‖
q
Lq(Ω) ≤ C, C = C(ν, β, cD,CT ,C$, d, q,Ω, ‖g‖L2(Ω)) if P(u, k) = $(u)k a.e. in Ω.(5.8)

Then, in view of (5.7) or (5.8), and of the assumption (3.4), we have (up to some subsequences)

kn → k weakly in W1,q
0 (Ω), as n→ ∞, for q < d′,(5.9)

kn → k strongly in Lγ(Ω), as n→ ∞, for γ ∈ [1, 2∗),(5.10)
kn → k a.e. in Ω, as n→ ∞.

Now we can pass to the limit n → ∞ almost integral terms of (4.48)-(4.49) by arguing analogously as we did in
the previous section. The terms that require a special treatment are the ones involving fn, εn and Rn, because we do
not know wether if these terms remain bounded as n → ∞. After the convergence of the term involving fn has been
established, the convergence of the term with Rn follows exactly as in [20, Section 5.2].
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5.2. Passing fn(un) to the limit n→ ∞. Our aim is to show that

(5.11)
ˆ

Ω

fn(un) · v dx→
ˆ

Ω

f(u) · v dx, as n→ ∞, ∀ v ∈ V ∩ L∞(Ω).

To prove this, we shall make use of Vitali’s convergence theorem. Let us first write

fn(un) · un = |fn(un)||un| cos(θn), θn := ∠(fn(un),un),

and observe that, due to (5.1) and by using (5.2) together with the assumptions (2.21) and (3.4), it can be proved that

(5.12)
ˆ

Ω

fn(un) · un dx ≤ C,

for some positive constant C not depending on n. Then we observe that, according to (3.10) and (3.2), for any L > 0

(5.13) |fn(un)| = |f(un)| ≤ sup
|un |<L

|f(un)| = HL if |un| < L .

and, due to (5.12), we have

(5.14) L
ˆ

Ω

|fn(un)|| cos θn| dx ≤
ˆ

Ω

fn(un) · un dx ≤ C if |un| ≥ L .

To use Vitali’s theorem, it remains to show that {fn(un)}n∈N is uniformly integrable. For that, we consider an arbitrary
ε > 0 and an arbitrary measurable subset E ⊂ Ω such that Ld(E) < δ for some δ > 0. As a consequence of (5.13)-
(5.14), we can writeˆ

E
|fn(un)|| cos θn| dx =

ˆ
E∩{|un |<L}

|fn(un)|| cos θn| dx +

ˆ
E∩{|un |≥L}

|fn(un)|| cos θn| dx

≤

ˆ
E∩{|un |<L}

|fn(un)| dx +
C
L
≤

ˆ
E

HL dx +
C
L

for any L > 0 and for some positive constant C not depending on n. Now, we take L such that C
L < ε

2 and, by the
assumption that HL ∈ L1(Ω) (see (3.2)), we may choose δ in such a way thatˆ

E
HL dx ≤ ‖HL‖L1(Ω)Ln(E) < δ‖HL‖L1(Ω) <

ε

2
.

As a consequence, we have

(5.15)
ˆ

E
|fn(un)|| cos θn| dx < ε,

and, by Vitali’s theorem, f(u) cos θ ∈ L1(Ω), where θ := ∠(f(u),u), and

fn(un) cos θn → f(u) cos θ strongly in L1(Ω), as n→ ∞.

On the other hand, by assumption (3.1),

| cos θn|, | cos θ| > τ for any n ∈ N,

for some τ > 0, and, due to (5.15), we have ˆ
E
|fn(un)| dx <

ε

τ
,

Then, again by Vitali’s theorem, f(u) ∈ L1(Ω) and

(5.16) fn(un)→ f(u) strongly in L1(Ω), as n→ ∞.

Since the test function v ∈ V ∩ L∞(Ω), (5.11) follows from (5.16).

On the other hand, from (5.3) and (5.16), we have (up to some subsequences)

(5.17) fn(un) · un → f(u) · u a.e. in Ω, as n→ ∞.

Then, due to (5.12) and (5.17), Fatou’s lemma yields that f(u) · u ∈ L1(Ω).
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5.3. Passing εn(kn) to the limit n → ∞. The proof of the convergence of the third term of (4.49) is analogous to
previous one and even simpler, because here we are dealing with scalar functions. So, our aim here is to show that

(5.18)
ˆ

Ω

εn(kn)ϕ dx→
ˆ

Ω

ε(k)ϕ dx, as n→ ∞, ∀ ϕ ∈ W1,q′

0 (Ω).

Similarly to the previous case, we start by taking v = kn in (4.49), whose resulting equation takes us, after we use
(2.11) or (2.12), (2.22), (3.14)-(3.15), (5.2) and (5.8), the last just in the case of P(u, k) = $(u)k a.e. in Ω, together
with the inequalities of Hölder and Sobolev, to

(5.19)
ˆ

Ω

εn(kn)kn dx ≤ C,

where C is a positive constant that does not depend on n. Now, let us prove that {εn(kn)}n∈N is uniformly integrable.
For that, we consider an arbitrary ε > 0 and an arbitrary measurable subset E ⊂ Ω such that Ln(E) < δ for some δ > 0.
On the other hand, we can see that for |kn| ≥ M, for an arbitrary M > 0, we can use (5.19) together with the fact that
εn(kn) kn ≥ 0 for all kn (see (4.7)), to show that

(5.20)
ˆ

E
|εn(kn)| |kn| dx ≤ C ⇒

ˆ
E
|εn(kn)| dx ≤

C
M
.

As a consequence of (5.19)-(5.20) and of the assumption (3.3), we can writeˆ
E
|εn(kn)| dx =

ˆ
E∩{|kn<M}

|εn(kn)| dx +

ˆ
E∩{|kn |≥M}

|εn(kn)| dx

≤

ˆ
E∩{|kn |<M}

|εn(kn)| dx +
C
M
≤

ˆ
E

GM dx +
C
M

for any M > 0 and for some positive constant C not depending on n. Next, we take M such that C
M < ε

2 and, by the
assumption that GM ∈ L1(Ω) (see (3.3)), we may choose δ in such a way thatˆ

E
GM dx ≤ ‖GM‖L1(Ω)Ln(E) < δ‖GM‖L1(Ω) <

ε

2
.

Thus, we have ˆ
E
|εn(kn)| dx < ε,

and, by Vitali’s theorem, ε(k) ∈ L1(Ω) and

(5.21) εn(kn)→ ε(k) strongly in L1(Ω), as n→ ∞.

Now, since the test functions ϕ ∈W1,q′ (Ω) ↪→ L∞(Ω), it follows that (5.18) is a consequence of (5.21).

As in the precedent section, from (5.10) and (5.21), we have (up to some subsequences)

(5.22) εn(kn)kn → ε(k)k a.e. in Ω, as n→ ∞.

Then, due to (5.19) and (5.22), Fatou’s lemma yields that ε(k)k ∈ L1(Ω).

Finally, we can pass to the limit n→ ∞ in the equations (4.48)-(4.49) to obtain (2.5)-(2.6) for any (v, ϕ) ∈ V∩L∞(Ω)×
W1,q′

0 (Ω).

5.4. To conclude that k ≥ 0 and ε(k) ≥ 0. This is an immediate consequence of the Subsection 4.4. In fact, using
(5.9) together with Sobolev’s inequality and (4.54), we obtain

‖k−‖Lq(Ω) ≤ lim inf
n→∞

‖k−n ‖Lq(Ω) ≤ C lim inf
n→∞

‖∇k−n ‖L2(Ω) ≤ 0.

This implies that k ≥ 0 a.e. in Ω and, as a consequence of this and of the assumption (2.17), we also end up with
ε(k) ≥ 0 a.e. in Ω.

The proof of Theorem 3.1 is thus finally finished. �
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