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Abstract. The Frank tensor plays a crucial role in linear elasticity, and in particular in

the presence of dislocation lines, since its curl is exactly the elastic strain incompatibility.
Furthermore, the Frank tensor also appears in Cesaro decomposition, and in Volterra theory

of dislocations and disclinations, since its jump is the Frank vector around the defect line.

The purpose of this paper is to show to which functional space the compatible strain e belongs
in order to imply a homogeneous boundary conditions for the induced displacement field on

a portion Γ0 of the boundary. This will allow one to define the homogeneous, or even the

mixed problem of linearized elasticity in a variational setting involving the strain e in place
of displacement u. With other puposes, this problem was originaly treated by Ph. Ciarlet

and C. Mardare, and termed the intrinsic formulation. In this paper we propose alternative
conditions on e expressed in terms of e and the Frank tensor Curlt e only, yielding a clear

physical understanding and showing as equivalent to Ciarlet-Mardare boundary condition.

1. Introduction

1.1. The intrinsic formulation of elasticity. One the one hand, Pysicists and mechanical
Engineers mostly consider strain and stress as their basic model variable in Elasticity, both for
theoretical and computational reasons. Indeed, given the stress tensor, the strain is then well
defined as soon as a constitutive law is provided, here a linear homogeneous and isotropic law.
Thus strain-stress constitutive law reads ε = Cσ, with C the compliance tensor, i.e., fourth-rank
(inverse) tensor of elasticity.

On the other hand, Mathematicians working in Elasticity, prefer the displacement as model
field, from which the strain is defined by the kinematic relation ε = ∇Su, and then the stress
by a constitutive law. This choice presumably comes from the study of elliptic boundary-
value problems, where the elasticity system is seen as a vector-valued variable extension of the
elliptic equations in divergence form. Moreover, weak and variational formulations are most
easily derived by means of the displacment, and show a convenient and elegant way of solving
problems in Elasticity.

There are profound theoretical arguments to refrain from taking the displacement as main
model variable. For instance, its possible multivaluedness, which is not to avoid from a Phys-
ical standpoint, since multivaluedness may have a meaning, but which must be addressed in
an adequate manner in the chosen mathematical formalism. Another example is the reference
configuration issue: while natural in finite elasticity as soon as an undeformed body is defined,
it becomes difficult to aprehend in linearized elasticity, since the deformed and undeformed
configurations are said to coincide, thus questioning the definition of the displacement field
as a variation between the current and the reference positions. Let us also mention plastic-
ity or defective bodies, where stress and defect-free reference configurations might not exist
(simultaneously, as intended), not to mention the possible use of intermediate configurations,
which induce a plastic and an elastic deformation (in whatever favorite order, but as such, de-
pending on the choice of this intermediate configuration), whose Physical meaning is far from
clear. In fact, what is a plastic distortion (i.e., the gradient of a plastic displacement) if no
constitutive law exist for the rotations (i.e., its skewsymmetric part)? Not to mention the fact
that in principle any rigourous model should be proven independent of the choice any reference
configuration.
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For these reasons, the intrinsic approach in linearized elasticity by Ph. Ciarlet and C.
Mardare [5] constitutes an extremely valuable attempt to reconcile in an elegant manner the two
aforementioned approaches and Scientific communities. In their presentation, the strain is the
main model variable, while variational formulations are sought. The displacement only appears
in a second step if the Riemannian curvature tensor associated to the elastic metric vanishes
(for the use of differential geoemtry concepts in Elasticity with defects, see e.g. [9, 10, 18]).
These strains are said compatible, as it is immediately remarked [14] that the above geometric
differential condition is equivalent, to the first order, to requiring that the strain has vanishing
incompatibility. In Ciarlet and Mardare approach a differential geometric setting is chosen (see
also [3]), where the boundary under analysis is defined by means of smooth enough immersions,
from which the curvilineat basis, the metric, the symmetric connexion and the curvature tensors
are derived. It should be emphasized that such derived curvilinear basis are indeed defined in the
body itself as well as on its boundary, but are not mutually orthogonal, and have no particular
Physical meaning.

In contrast, in the proposed approach our wish is to define orthonormal basis in the body,
which have a Physical meaning, that is, are in some sense intrinsic to the body, while also
considering an approach of differential geometry in a first step. Only in a second step, the
appropriate functional spaces with Hilbertian structure are introduced and proved well suited
to study the Elasticity problem in intrinsic terms. Moreover, since our curvilinear basis is chosen
orthonormal the associated metric (in the body and on its surface) reduces to the identity. In
particular, the notions of covariant and contravariant components of a vector/tensor do coincide.

Our model variables will be the strain end the Frank tensor, that is the transpose of the
strain curl, which also bear a clear physical meaning. Our aim is thus to determine a well-
posed variational problem in terms of the strain only and with prescribed conditions of these
two quantities on a connected subset Γ0 of the boundary. In our approach, the displacement
also appears in a second step, as one of a two-field strain decomposition, and is to be considered,
by this procedure, as a mere mathematical object, whose interpretation as displacement is made
for conveniance, and obvisously coincide with the classical displacement field in the special case
of compatible strains.

1.2. Notations and conventions. Let Ω be a bounded domain of R3 with smooth boundary
∂Ω, i.e., the body Ω is embedded in a Euclidean manifold. By smooth we mean C∞, but this
assumption could be considerably weakened. Let M3 denote the space of square 3-matrices, and
S3 of symmetric 3-matrices. Curl, incompatibility and cross product with second-rank tensors
are defined componentwise as follows with the summation convention on repeated indices. Let
the Cartesian base be denoted by {ei} and the associated Cartesian coordinates by xi. In
the following definiton, E represents a second-rank tensor, N is a unit vector (which will be
extended from the boundary to the domain), and ε is the Levi-Civita symbol. Furthermore ∂xi
stands for partial derivative with respect to xi (further in the paper ∂i will mean a curvilinear
derivative). In the Cartesian basis, one has:

( Curl E)ij := (∇× E)ij = εjkm∂xkEim,

( inc E)ij := ( Curl Curlt E)ij = εikmεjln∂xk∂xlEmn,

(N × E)ij := −(E ×N)ij = εjkmNkEim.

Note that the expression of the incompatibility in a general curvilinear basis is a difficult issue
addressed in [19].

1.3. Origin of our approach: the Frank tensor and Cesaro-Volterra identities. As a
first step, let us recall the problem of reconstructing a displacement from a given symmetric
tensor (see, e.g., [13] for this classical topic). In linearized elasticity, if all the functions involved
are smooth enough, we prove that the displacement field u is completely defined in terms of
the linearized strain tensor e by a recursive integral formula (cf. (1.8)), which we compute
explicitly.

Let e ∈ C∞(Ω,M3) be a symmetric tensor field such that inc e = 0 on Ω. Let us fix
x0, x ∈ Ω, and let γ ∈ C1([0, 1],Ω) be a curve in Ω such that γ(0) = x0 and γ(1) = x. We
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define the following quantities:

wi(x; γ) := wi(x0) +

∫
γ

εipn∂pemn(y)dym (1.1)

ui(x; γ) := ui(x0) +

∫
γ

(eil(y)− εilkwk(y)) dyl. (1.2)

Let us now prove that the quantities w(x) and u(x) defined in (1.1) and (1.2) do not depend
on the choice of the path from x0 to x. We will show that this is a consequence of the fact
that inc e = 0. In such a case the quantities w and u define two C∞ functions on Ω that will
be called the rotation and the displacement vectors associated to the strain e, respectively. In
order to prove this fact, we compute the jump of w and u between two arbitrary curves with
the same endpoints, and observe that this quantity is zero if and only if the incompatibility
tensor vanishes. These are exactly the well known Saint-Venant compatibility relations.

The rotation and displacement jumps are defined as

[[wi]](x;x0) := wi(x; γ)− wi(x; γ̃), (1.3)

[[ui]](x;x0) := ui(x; γ)− ui(x; γ̃), (1.4)

respectively. Here, γ and γ̃ are two distinct curves with start- and endpoints x0 and x. Therefore
the jumps will be non-vanishing as soon as γ − γ̃ encloses at least ones a dislocation line, by
Stokes theorem (cf. [14]). In particular [[wi]] defines the Frank vector, associated to the Frank
tensor by (1.1), while [[ui]] defines the Burgers vector, associated to the Frank tensor by (1.2).

Theorem 1.1 (Rotation and displacement jumps [14]). Let Ω ⊆ R3 be a simply-connected
domain, let x0 ∈ Ω be prescribed, and let w, u ∈ C∞(Ω,R3) be the functions defined in (1.1)
and (1.2), respectively. Then the following formulae hold:

[[wi]](x;x0) =

∫
Sγ−γ̃

(inc e(y))imdSm(y), (1.5)

[[ui]](x;x0) =

∫
Sγ−γ̃

(ym − xm)εimk(inc e(y))qkdSq(y), (1.6)

for all x ∈ Ω, and where Sγ−γ̃ is a surface enclosed by the the closed path γ− γ̃. In particular,

[[wi]], [[ui]] = 0 for each couple of curves γ, γ̃ ⇐⇒ inc e = 0.

Remark 1.2. As a consequence of inc e = 0, (1.1) and (1.2) do not depend on the choice of
the curve γ ∈ C 1([0, 1],Ω) connecting x0 to x. In particular, the vector fields w ∈ C∞(Ω,R3)
and u ∈ C∞(Ω,R3) are univoquely defined. Thus, in (1.1) and (1.2), one can use the notation∫
γ

=

∫ x

x0

.

It is straightforward to prove the following result:

Corollary 1.3 (Saint-Venant compatibility conditions in C∞;[14]). Let Ω be a simply-connected
and bounded open set in R3 and let e ∈ C∞(Ω,M3) be a symmetric tensor field. Then there
exists u ∈ C∞(Ω,R3) (given by (1.2)) such that e = ∇su, if and only if

inc e = 0. (1.7)

Now, the following classical quantities can be introduced:

Definition 1.4 (Strain and Frank tensor). Let u : Ω→ R3 be a smooth displacement field, i.e.,
it writes in the Cartesian base {ei} as u = ûie

i. Let us introduce the following quantities:

(i) the linear elatic strain eij := (∇u) · ei ⊗ ej = 1
2

(
∂xj ûi + ∂xi ûj

)
;

(ii) the Frank tensor εijpk∂pejk = ( Curlt e)ij,

where xi stands for the ith Cartesian coordinate.

The term Frank tensor comes from the fact that its integration on a closed curve around a
dislocation, yields by (1.1), the jump of the rotation vector, which is known as the Frank vector
[11, 12].
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Remark 1.5. Let x ∈ Ω and γx be a smooth curve joining x0 to x. Let y ∈ γx and γy be a
smooth curve joining x0 to y. By Eqs (1.1) and (1.2), the displacement writes as a recursive
line integral involving the strain and the Frank tensor, i.e.,

ui(x; γx) = ui(x0) +

∫
γx

(
eil(y)− εilk

(
wi(x0) +

∫
γy

( Curlt e)im(ξ)dξm

)
(y)

)
dyl. (1.8)

1.4. Motivation of our approach and purpose of the paper. It is seen by (1.8) that the
assumed smooth displacement in linearized elasticity can be expressed by means of the strain,
here a general symmetric tensor e, in practice a tensor derived from the stress tensor by a con-
stitutive law, and of the transpose of the curl of the strain, called the Frank tensor. On the one
side, this classical formula is at the basis of the intrinsic, strain-based formulation of elasticity,
on the other, it directly provided the Frank and Burgers vectors in terms of the strain and its
curl. Hence, it appears that the Frank tensor plays a crucial role in elasticity with dislocations.

Based on these considerations, the purpose of this paper is to show to which functional space
e belongs in order to imply a homogeneous boundary conditions in terms of the displacement
field on a connected subset Γ0 of ∂Ω. This will allow one to define the homogeneous, or even
the mixed problem of elasticity in a variational setting involving e in place of u. This problem
was originaly treated by Ph. Ciarlet and C. Mardare, and termed the intrinsic approach [5],
where they determined in differential geometric terms which conditions e shoud satisfy on the
boundary. In this paper we present a alternative conditions on e expressed in terms of the
Frank tensor only, thereby providing a Physical understanding of the boundary condition. We
also show that it is equivalent to Ciarlet-Mardare condition. Moreover, we believe that this
intrinsic approach is mandatory when dislocation lines are present, since the displacement, being
multiple-valued by (1.2), is an uncomfortable model variable (a rigorous manner of introducing
the displacment as a main variable, though, is for instance to consider torus-valued maps as
done in [15]). In the presence of dislocations, the Frank tensor is a model variable, beside the
elastic strain, and its curl is precisely the strain incompatibility as related to the dislocation
density. For these reasons our belief is that it is worth modelling linearized elasticity in terms
of these two tensors. In fact the classical setting will appear as soon as the dislocation density
vanishes (and thus the strain incompatibility). This paper treats a particular such aspect as
related to the relation between a strain/Frank tensor-based and a displacement-based boundary
condition.

2. Extension and differentiation of the normal and tangent vectors to a
surface

The aim here is to construct a curvilinear basis on the boundary which should be smooth
and also orthonormal, starting from the vector N∂Ω normal to the boundary and defining two
tangent vectors perpendicular to N∂Ω. This basis is then extended to the whole body. The
natural moving frame sought is close in spirit to the Darboux frame of surfaces, though in
principle the latter may only be defined at non-umbilical points. As a matter of fact, in order
to achieve a certain level of generality, we will not consider principal lines of curvature with
their associated principal curvatures, and hence the gradient of the normal vector will be given
by a symmetric matrix with possibly non-zero extradiagonal components.

2.1. Signed distance function and extended unit normal. We denote byN∂Ω the outward
unit normal to ∂Ω, and by b the signed distance to ∂Ω, i.e.,

b(x) =

{
dist(x, ∂Ω) if x /∈ Ω,
−dist(x, ∂Ω) if x ∈ Ω.

We recall the following result.

Theorem 2.1 ([7], Chap. 5, Thms 3.1 and 4.3). There exists an open neighborhood W of ∂Ω
such that

(1) b is smooth in W ;
(2) every x ∈W admits a unique projection p∂Ω(x) onto ∂Ω;
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(3) this projection satisfies p∂Ω(x) = x− 1
2∇b

2(x), x ∈W ;
(4) it holds ∇b(x) = N∂Ω(p∂Ω(x)), x ∈W .

In particular, this latter property shows that ∇b(x) = N∂Ω(x) for all x ∈ ∂Ω and |∇b(x)| = 1
for all x ∈W . Therefore, we define the extended unit normal by

N(x) := ∇b(x) = N∂Ω(p∂Ω(x)), x ∈W. (2.1)

2.2. Tangent vectors and orthonormal frame on ∂Ω. For all x ∈ ∂Ω, we denote by T∂Ω(x)
the tangent plane to ∂Ω at x, that is, the orthogonal complement of N∂Ω(x). As ∂Ω is smooth,
there exists a covering of ∂Ω by open balls B1, ..., BM of R3 such that, for each index k, two
smooth vector fields τA∂Ω, τ

B
∂Ω can be constructed on ∂Ω ∩ Bk where, for all x ∈ ∂Ω ∩ Bk,

(τA∂Ω(x), τB∂Ω(x)) is an orthonormal basis of T∂Ω(x). In all the sequel, the index k will be
implicitly considered as fixed and the restriction to Bk will be omitted. In fact, for our needs,
global properties and constructions will be easily obtained from local ones through a partition
of unity subordinate to the covering.

Using that the Jacobian matrix DN(x) = D2b(x) of N(x) is symmetric, differentiating the
equality |N(x)|2 = 1 entails ∂NN(x) = DN(x)N(x) = 0, x ∈ W . In other words, N(x) is an
eigenvector of DN(x) for the eigenvalue 0. For all x ∈ ∂Ω, the system (τA∂Ω(x), τB∂Ω(x), N∂Ω(x))
is an orthonormal basis of R3. In this basis, DN(x) takes the form

DN(x) =

κA∂Ω(x) ξ∂Ω(x) 0
ξ∂Ω(x) κB∂Ω(x) 0

0 0 0

 , x ∈ ∂Ω, (2.2)

where κA∂Ω, κB∂Ω and ξ are smooth scalar fields defined on ∂Ω. If R ∈ {A,B}, we denote by R∗

the complementary index of R, that is, R∗ = B if R = A and R∗ = A if R = B.

2.3. Extended tangent vectors and the parallel curvinormal frame. Let d be defined
in W by

d :=
(
1 + b κA∂Ω ◦ p∂Ω

) (
1 + b κB∂Ω ◦ p∂Ω

)
− (b ξ∂Ω ◦ p∂Ω)

2
.

Possibly adjusting W so that d(x) > 0 for all x ∈W , we define in W :

τR = τR∂Ω ◦ p∂Ω, κR = d−1
(

(1 + b κR
∗

∂Ω ◦ p∂Ω)(κR∂Ω ◦ p∂Ω)− b (ξ∂Ω ◦ p∂Ω)2
)
, (2.3)

ξ = d−1ξ∂Ω ◦ p∂Ω, κ = κA + κB , γR = div τR. (2.4)

Obviously, for each x ∈ W , the triple
(
τA(x), τB(x), N(x)

)
forms an orthonormal basis of R3,

which we call the the curvinormal (parallel) frame. Next, we compute the normal and tangential
derivatives of these vectors. We denote the tangential derivative ∂τR by ∂R for simplicity, i.e.,
∂Ru := DuτR, where Du stands for the differential of u, and ∂Ru its value in the direction τR.

Theorem 2.2 ([1]). The following holds in W :

∂Nτ
R = 0, ∂RN = κRτR + ξτR

∗
, ∂Rτ

R = −κRN − γR
∗
τR
∗
, ∂R∗τ

R = γRτR
∗
− ξN,

div N = tr DN = ∆b = κ. (2.5)

In this paper we make use of a orthonormal frame parallel to the boundary. The induced
coordinates are non-holonomic in the following sense.

Corollary 2.3 (Non-holonomic curvinormal frame [1]). If f is twice differentiable in Ω it holds

∂R∂Nf − ∂N∂Rf = κR∂Rf + ξ∂R∗f. (2.6)

3. Differential geometry on the boundary with curvinormal basis

At each point x ∈ ∂Ω the curvinormal basis
(
gi(x)

)
i=A,B,N

:=
(
τA(x), τB(x), N∂Ω(x)

)
is

orthonormal and differentiable by Theorem 2.2. Remark that indices P,Q,R will stand for A
or B, and denote one of the two orthogonal tangent vectors on the boundary, whereas index
N will always be associated to the normal N∂Ω. In some sense, the chosen curvilinear basis
is a generalization to general surfaces of the spherical or cylindrical basis. We recall that ∂i
means the differential in the direction gi. Let u be a scalar. Then, ∂iu = ∂Ru = τR · ∇u for
R = A,B, or ∂Nu = N · ∇u for i = N , with ∇ = ei∂xi the Cartesian gradient operator, where
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ei stands for the ith Cartesian basis vector. Recall that partial curvilinear derivatives do not
commute, as shown in Corollary 2.3. For instance, the gradient in spherical coordinates reads
∇u = ∂ruer + 1

r∂φueΦ + 1
r sinφ∂θueθ and hence ∂A = 1

r∂φ and ∂B = 1
r sinφ∂θ.

Furthermore, let x = xje
j denote the position vector, and gi = gike

k be the ith curvilinear
basis vector. Then by definition, ∂ix = gik∂xkx = gike

k = gi.

3.1. Christoffel symbols and Riemannian curvature. A vector such as the displacement
field will write as u = uig

i with ui its covariant components. Moreover, the extrinsic metric
is Euclidean, since gij := gi · gj = δij . Let gi := gijgj be the dual of the basis vector. The
Christoffel symbol of second kind Γpij is defined as the linear operator such that [3]

∂jg
p = −Γpijg

i, (3.1)

called the Levi-Civita connection. In other words,

Γpij := −gi · ∂jgp.
Remark that the body manifold in this paper is Euclidean and hence the associated connection
is symmetric. However, the associated Christoffel symbols are not symmetric due to the choice
of a non-holonomic frame, since Γpij := −gi · ∂jgp = −∂j(gp · gi) = gp · ∂jgi = gp · ∂j∂ix where
∂j∂ix 6= ∂j∂ix by our choice of an non-holonomic frame, see Lemma 2.3.

As a consequence of (3.1), it holds

∂ju = ∂j(uig
i) = (∂jui − Γpijup)g

i = ui‖jg
i, (3.2)

where the covariant derivative of the covariant component of u reads

ui‖j := ∂jui − Γpijup. (3.3)

By Theorem 2.2, it is easily deduced by identification with (3.1) that the only nonvanishing
components of Γpij read (with no sum on repeated indices)

ΓNRR∗ = −ξ, ΓNRR = −κR,ΓR
∗

NR = ξ, ΓRR∗R = γR
∗
, ΓRNR = κR, ΓRR∗R∗ = −γR. (3.4)

As an example, in a spherical coordinates/components system, it holds1 i, j ∈ {φ, θ}, κR = 1
r ,

γφ = 1
tanφ , γθ = 0, and hence

Γrij =

 0 0 0
0 − 1

r 0
0 0 − 1

r

 , Γφij =

 0 1
r 0

0 0 0
0 0 − 1

r tanφ

 , Γθij =

 0 0 1
r

0 0 1
r tanφ

0 0 0

 . (3.5)

Moreover, it is observed that Γpij is not symmetric, i.e., Γpij 6= Γpij . This Euclidean metric is

therefore associated with a nonvanishing “anholonomicity torsion” (as opposed to the connec-
tion torsion, which here vanishes),

T pij := Γpij − Γpji.

In the curvinormal basis, it is easily computed that the only nonvanishing components of T pij
are

TRij = κRδiNδjR + ξδiNδjR∗ + (γR
∗
− γR)δiR∗δjR.

In particular in spherical coordinates one has

T rij = 0, Tφij =

 0 1
r 0

− 1
r 0 0

0 0 0

 , T θij =

 0 0 1
r

0 0 1
r tanφ

− 1
r − 1

r tanφ 0

 . (3.6)

The Riemann curvature tensor is defined as [8]

Riemq
ijk := ∂kΓqij − ∂jΓ

q
ik + ΓpijΓ

q
pk − ΓpikΓqpj . (3.7)

Accordingly, the Ricci curvature tensor is defined as its jq-trace, viz.,

Ricik := Riemq
iqk := ∂kΓqiq − ∂qΓ

q
ik + ΓpiqΓ

q
pk − ΓpikΓqpq. (3.8)

Lastly the scalar curvature is the trace of Ric, i.e.,

R := Rickk := ∂kΓqkq − ∂qΓ
q
kk + ΓpkqΓ

q
pk − ΓpkkΓqpq. (3.9)

1Here, φ denotes the polar, and θ the azimuthal coordinate, respectively.
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In the curvinormal basis, it is easily computed from (3.9) and (3.4) that (with sum on R),

R = 2∂Nκ+ 2∂Rγ
R + 2

(
ξ2 + (γR)2

)
, (3.10)

which for a spherical surface or radius r (for which ξ = 0, γR = 1
r tanφ and κR = 1/r),

yields R = 4/r2 − 2/(r2 sin2 φ) + 2/(r2 tan2 φ) = 2/r2, that is twice the Gaussian curvature, as
expected.

Remark 3.1. Let us emphasize that Eq. (3.10) yields a relation between the scalar curvature
and the normal derivative of the mean curvature H = κ/2.

3.2. Some identities in the curvinormal basis. Recall that if u is a vector, u = uig
i = ûje

j ,
then (∇u)mn = ∂xm ûn, and we write

gradu := (∇u)mne
m ⊗ en = ui‖jg

i ⊗ gj = ∂ju⊗ gj . (3.11)

Let qR be the curvilinear coordinate associated to gR in the sense that gR = ∂Rx = 1
hR
∂qRx,

with hR := ‖∂qRx‖, and where x stands for the position vector of a point. Otherwise said, qR
is the curvilinear abcissa of the curve with tangent vector τR. Indeed,

∂qRu = ∂xiu
∂xi
∂qR

= hRg
R
i ∂xiu = hR∂Ru. (3.12)

Remark that by Lemma 2.3 the ∂R derivatives do not commute, contrarily to ∂qR , because of
the factors hR. This object of anholonomicity (cf. [17, 18]) reflects itself in the non-symmetry
of the Christoffel symbols. As an example, consider the spherical base system, where hN =
hr = 1, hA = hφ = 1

r , hB = hθ = 1
r tanφ , and qA = φ (polar angle), qB = θ (azimuthal angle).

One has

(∂A∂r − ∂r∂A) =
1

r2
∂φ, (∂B∂r − ∂r∂B) =

1

r2 sinφ
∂θ, (∂B∂A − ∂A∂B) =

1

r2 sinφ tanφ
∂θ.(3.13)

Partial derivative in curvilinear coordinates might be defined in a weak sense by means of
surface integrals and (3.12) as follows:∫

ωA×ωB
∂Ru · ϕJdqAdqB := −

∫
ωA×ωB

u · hR∂R
(

1

hR
ϕJ

)
dqAdqB , (3.14)

with J the surface Jacobian and ϕ, a test function with compact support. Here ωR stands for
a subset of the domain of qR.

Setting

eij = eij(u) :=
1

2
(ui‖j + uj‖i), (3.15)

one has by (3.2) that

eij =
1

2
(∂iu · gj + ∂ju · gi), (3.16)

and in particular,

eNN = uN‖N = (∂Nu) ·N. (3.17)

In general, for the covariant components of a second-rank tensor A it holds [8]

Aij‖k = ∂kAij − ΓlikAlj − ΓljkAil. (3.18)

Let Aij = ui‖j . Then by (3.18) one has ui‖jk := (ui‖j)‖k and hence

ui‖jkg
i = ∂kui‖jg

i − (Γlikul‖j + Γljkui‖l)g
i

= ∂k
(
ui‖jg

i
)

+ ui‖jΓ
i
lkg

l − (Γlikul‖j + Γljkui‖l)g
i

= ∂k
(
ui‖jg

i
)
− Γljkui‖lg

i,

where (3.3) and a change of dumb indices have been used. Therefore,

∂k(∂ju) =
(
ui‖jk + Γljkui‖l

)
gi. (3.19)
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In particular, it follows by (3.2) that

∂k(∂ju) ·N = uN‖jk +
(
Γljk∂lu

)
·N. (3.20)

Moreover, one has

∂k(∂ju) · τR = ∂k(∂ju · τR)− ∂ju · ∂kτR = ∂k(∂juR)− ∂k(u · ∂jτR)− ∂ju · ∂kτR

= uR‖jk +
(
Γljk∂lu

)
· τR. (3.21)

Remark also that

ui‖jk − ui‖kj = (∂k∂j − ∂j∂k)u · gi − T ljkui‖l, (3.22)

where we recall that T stands for the anholonomicity torsion. Note that in spherical coordinates
and by (3.6) and (3.13) reads (with a slight abuse of notations, since one writes qR instead of
R as covariant differentiation indice)

ui‖rφ − ui‖φr = ui‖rθ − ui‖θr = ui‖θφ − ui‖φθ = 0, (3.23)

that is, the second covariant derivatives commute in spherical coordinates/components. In
particular, one has εljkui‖jk = 0 in spherical coordinates/components.

Some identities are most easily derived for the contravariant components, and only expressed
in covariant components in a second step. Let ui be the contravariant coordinate of the vector
u = uigi. Then it is well known that the covariant derivative of vector u and tensor A are
expressed as (cf. [8]), ui‖j := ∂ju

i + Γipju
p and (Aij)‖k := ∂kA

i
j + ΓipkA

p
j − ΓpjkA

i
p . Moreover,

ui‖jk := (ui‖j)‖k, and the Ricci identity for contravariant components ui then reads (with sum

on q and p)

ui‖jk − u
i
‖kj = Riemi

qjku
q + T pjku

i
‖p,

which is an alternative formula to (3.22) which shows only the value of u and of its derivative
in the RHS. Therefore,

uQ‖NR − u
Q
‖RN = RiemQ

qNRu
q + T pNRu

Q
‖p,

which reads in the curvinormal basis (with sum on q but not on R),

uQ‖NR − u
Q
‖RN = ∂NΓQqRu

q + TPNRu
Q
‖P = ∂NΓQqRu

q + κRuQ‖R + ξuQ‖R∗

=
(
∂NΓQqR + κRΓQqR + ξΓQqR∗

)
uq + κR∂Ru

Q + ξ∂R∗u
Q

= `QNR;qu
q + κR∂Ru

Q + ξ∂R∗u
Q, (3.24)

where ` is the expression inside the parenthesis of the RHS. Setting apart the linear parts in
uq, and in ∂Ru

q, we have expressed (3.24) as

δuQ‖NR := uQ‖NR − u
Q
‖RN = `QNR;qu

q + ˜̀
NR∂Ru

Q + ˜̀
NR∗∂R∗u

Q, (3.25)

where ˜̀ depend on κ and ξ. It is obvious that the covariant differentiation of the curvinor-
mal metric gij‖k vanishes, since the metric is the identity tensor. Thus, lowering indices and
covariant differentiation mutually commute [8] and the counterpart of (3.25) for the covariant
components reads

δum‖jR := um‖jR − um‖Rj = δQm`
Q
NR;qu

q + ˜̀
NR∂Rum + ˜̀

NR∗∂R∗um. (3.26)

where `QmNR;q := δQm`
Q
NR;q. Now, it is easily deduced from (3.15) and (3.25) that

eQN‖R + eRN‖Q − eQR‖N = uN‖QR +
1

2
(δuQ‖NR + δuR‖NQ),

which by (3.3) and (3.20) yields

eQN‖R + eRN‖Q − eQR‖N = uN‖QR +
1

2
(δuQ‖NR + δuR‖NQ)

=
(
∂R∂Qu− ΓlQR∂lu

)
·N +

1

2
(δuQ‖NR + δuR‖NQ).
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Hence, by (3.17),

eQN‖R + eRN‖Q − eQR‖N + ΓNQReNN =
(
∂R∂Qu− ΓPQR∂Pu

)
·N

+
1

2
(δuQ‖NR + δuR‖NQ). (3.27)

3.3. Restatement of Ciarlet-Mardare results in [5]. Basically, the differential geometry
on the boundary by Ph. Ciarlet and C. Mardare [3, 5] is defined by means of a holonomic
non-orthogonal frame, whereas our choice of basis vectors on the boundary, suitably extended
in the domain, are orthonormal, but non-holonomic, thereby inducing a non-vanishing anholo-
nomicity (non-symmetry of the Christoffels symbols).

Let Γ0 be a connected subset of ∂Ω. Let u ∈ C 2(Ω̄) and let uΓ0
denote the boundary trace

of u on Γ0. Set

e = e(u) := gradSu = (∇S û)mne
m ⊗ en =

1

2
(ui‖j + uj‖i)g

i ⊗ gj

=
1

2
(∂iu · gj + ∂ju · gi)gi ⊗ gj , (3.28)

and let eΓ0
be the boundary trace of e on Γ0. Let us define the operator γ : C 2(Γ̄0,R3) →

C 1(Γ̄0,R3),

γ(uΓ0
) := γQR(uΓ0

)gQ ⊗ gR ∈ C 1(Γ̄0,R3), (3.29)

called the linearized change of metric induced by uΓ0
[5], whose components read

γQR(uΓ0) :=
1

2
(∂QuΓ0 · gR + ∂RuΓ0 · gQ). (3.30)

Furthermore, we introduce the operator γ] : C 1(Ω̄)→ C 1(Γ̄0,R3)

γ](e) := γ]QR(e)gQ ⊗ gR ∈ C 1(Γ̄0,R3), (3.31)

where

γ]QR(e) := (eΓ0)QR. (3.32)

It is immediate from (3.28) and our curvinormal frame approach that

γ]QR(e) = γQR(uΓ0). (3.33)

Definition 3.2. Let the linearized change of curvature induced by uΓ0
be given by

ρ(uΓ0) := ρQR(uΓ0)gQ ⊗ gR ∈ C (Γ̄0,R3) (3.34)

with the components given by

ρQR(uΓ0) :=
(
∂R∂QuΓ0 − ΓPQR∂PuΓ0

)
·N. (3.35)

Let

ρ](e) := ρ]QR(e)gQ ⊗ gR ∈ C (Γ̄0,R3), (3.36)

with the components given by

ρ]QR(e) :=
(
eQN‖R + eRN‖Q − eQR‖N + ΓNQReNN

)
Γ0
. (3.37)

The main preliminary results of [5] are restated in the curvinormal basis as follows:

Theorem 3.3 (Ciarlet-Mardare [5]). One has

ρ](e) = ρ(uΓ0
) + δρ(uΓ0

) on Γ0, (3.38)

where

(δρ)QR(u) :=
1

2
(δuQ‖NR + δuR‖NQ). (3.39)

Moreover, there exist positive constants C1, C2, C3 and C4 such that

‖γ](e)‖H−1(Γ0) + ‖ρ](e)‖H−2(Γ0) ≤ C1 inf
r∈R(Ω)

‖(u+ r)Γ0
‖L2(Γ0) ≤ C2‖e‖L2(Ω), (3.40)
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with R(Ω) the set of rigid displacements in Ω, and

inf
r∈R(Γ0)

‖(u+ r)Γ0
‖L2(Γ0) ≤ C3

(
‖γ(uΓ0

)‖H−1(Γ0) + ‖ρ(uΓ0
)‖H−2(Γ0)

)
(3.41)

≤ C4

(
‖γ(uΓ0

)‖H−1(Γ0) + ‖(ρ+ δρ)(uΓ0
)‖H−2(Γ0)

)
(3.42)

≤ C4

(
‖γ](e)‖H−1(Γ0) + ‖ρ](e)‖H−2(Γ0)

)
, (3.43)

with R(Γ0) the set of rigid displacement in Γ0.

Note that (3.43) stems from (3.42) by Eqs. (3.33) and (3.38). Note also that in Ciarlet-
Mardare original formulation of this result, δρ = 0 because their connection is symmetric
(i.e., their frame is holonomic). The proof of (3.38) is basically Eq. (3.27), here proved in the
curvinormal basis. By inspecting the original proof in [5], Eq. (3.40) is also easily demonstrated,
since by formulae (3.25) and (3.14) one has

|
∫

Γ0

(δρ)QR(u) · ϕdS(x)| ≤ |
∫
ω0

u ·ΨdqAdqB‖ ≤ C1‖uΓ0
‖L2(Γ0),

for some positive constant C1, some vector Ψ with compact support independent of u, and
with ω0 the domain of (qA, qB) associated to Γ0. Lastly, to prove (3.41), scrutating again
the original proof in [5], it suffices to bound the terms ∂R∂Q(uP )Γ0

in H−2(ω0) in terms
of ‖ 1

2 (∂R(uΓ0
)Q + ∂Q(uΓ0

)R)‖H−1(ω0) and ‖uΓ0
‖H−1(ω0), then use an argument of Nečas [2],

noting that the extra terms appearing due to the nonsymmetric property of the connexion
are also bounded by ‖ 1

2 (∂R(uΓ0)Q + ∂Q(uΓ0)R)‖H−1(ω0) and by ‖uΓ0‖H−1(ω0), from formu-
lae (3.21) and (3.25). Note that the bound (3.42) is obtained by writing ‖ρ(uΓ0

)‖H−2(Γ0) ≤
‖(ρ + δρ)(uΓ0

)‖H−2(Γ0) + ‖δρ(uΓ0
)‖H−2(Γ0) and using the fact that by (3.39) and (3.24) one

bounds ‖δρ(uΓ0
)‖H−2(Γ0) by means of ‖ 1

2 (∂R(uΓ0
)Q + ∂Q(uΓ0

)R)‖H−1(ω0) and ‖uΓ0
‖H−1(ω0).

The main result in [5] is now stated in the curvinormal basis. Its proof basically follows from
(3.38)-(3.41) and standard extension operators.

Theorem 3.4 (Ciarlet-Mardare Main result [5]). Let u ∈ H1(Ω) and let e = eij(u)gi⊗ gj with

eij(u) =
1

2
(∂iu · gj + ∂ju · gi). (3.44)

Then the following conditions satisfy (i)⇒ (ii)⇒ (iii):

(i) uΓ0
= 0

(ii) γ̄](e) = ρ̄](e) = 0
(iii) uΓ0

∈ R(Γ0),

where γ̄] and ρ̄] are suitable extensions of γ] and ρ].

4. Function spaces for the incompatibility operator

4.1. Definitions and basic properties. Let Γ0 be a connected subset of ∂Ω. Define

H2
comp(Ω) := {E ∈ H2(Ω,S3) : inc E = 0 in Ω}

H2
Γ0;comp(Ω) := {E ∈ H2

comp(Ω) : E = Curlt E ×N = 0 on Γ0}
Hinc(Ω) := {E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)}
Hcomp(Ω) := {E ∈ L2(Ω,S3) : inc E = 0 in Ω}

HΓ0;comp(Ω) := {E ∈ Hinc(Ω) : inc E = 0 in Ω, E = Curlt E ×N = 0 on Γ0}.
The spaces H(Ω), H0(Ω) and the above affine spaces are naturally endowed with the Hilbertian
structure of H2(Ω,S3). Note that in order to define Hinc(Ω) we should precise that inc E ∈
H−2(Ω,S3) and that the boundary traces in the space Hcomp(Ω) are defined in a weak sense,
whose exact meaning is the object of Corollary 4.5 (see Eqs. (4.18) and (4.19)).

Lemma 4.1 (Amstutz-Van Goethem [1]). For all E ∈ H2(Ω,S3) it holds an open neighborhood
W of ∂Ω:

Curlt E ×N = − (∂NE ×N)
t ×N +

(∑
R

τR × ∂RE

)t
×N on ∂Ω.
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In particular, if (∂NE ×N)
t ×N = 0 = E on ∂Ω, then

Curlt E ×N = 0 on ∂Ω.

Lemma 4.2. Let E ∈ H2(Ω,S3). If ( Curlt E)×N = 0 on on Γ0, then (i) ∂RERN = ∂NERR,
(ii) ∂RER∗N = ∂NERR∗ , and (iii) ∂RER∗R∗−∂RERR∗ = 0, on on Γ0 and for R = A or R = B.
In particular, if E = 0 on on Γ0 then ∂NERR = ∂NERR∗ = 0 on on Γ0.

Proof. Let us compute ( Curlt E)×N in the local basis (τA, τB , N). From

( Curlt E)×N)im = εmjpεikl∂kEjlNp,

one has Np = δpN and statement (i) follows from (with R = A,B)

( Curlt E)×N)R∗R∗ = εR∗jN εR∗kl∂kEjl = (δRkδNl − δRlδNk)∂kERl = ∂RERN − ∂NERR.

Statement (ii) follows from

( Curlt E)×N)RR∗ = εR∗jN εRkl∂kEjl = εR∗RN εRkl∂kEjl = ∂NERR∗ − ∂R∗ERN ,

and (iii) by

( Curlt E)×N)NR = εRjN εNkl∂kEjl = εNkl∂kER∗l = ∂RER∗R∗ − ∂R∗ER∗R,

with R = A,B, proving the result, since ∂RE = E = 0 on on Γ0 if E = 0 on on Γ0. �

The central contribution of the present work is the following Theorem, whose proof follows
from the preceeding discussion.

Theorem 4.3. Let e ∈ C 1(Ω̄) ∩H2
Γ0;comp(Ω). The following conditions are equivalent:

(1) e = Curlt e×N = 0 on Γ0

(2) γ](e) = ρ](e) = 0 on Γ0.

Proof. This is a direct consequence of Eqs. (3.33) and (3.37), Eq. (3.18), and items (i) and (ii)
of Lemma 4.2. �

4.2. Green formula and weak trace operators. Denote AS = (A+ AT )/2 the symmetric
part of a tensor A.

Theorem 4.4 (Green formula for the incompatibility[1]). Suppose that E ∈ C2(Ω̄,S3) and
η ∈ H2(Ω,S3). Then∫

Ω

E · inc ηdx =

∫
Ω

inc E · ηdx

+

∫
∂Ω

T1(E) · η dS(x) +

∫
∂Ω

T0(E) · ∂NηdS(x), (4.1)

with the trace operators defined as

T0(E) := (E ×N)
t ×N, (4.2)

T1(E) :=
(

Curlt (E ×N)
)S

+ ((∂N + κ)E ×N)
t ×N +

(
Curlt E ×N

)S
, (4.3)

where we recall that κ stands for twice the mean curvature (cf. Section 2.3).

It is crucial to note that, by (4.2), only the tangential components of ∂Nη are to be consid-
ered in the right-hand side of (4.1).

As we have seen, the two Dirichlet boundary conditions imposed in the space H2
Γ0;comp(Ω)

read D1(E) = EΓ0
(i.e., the trace of E on Γ0) and D2(E) = ( Curlt E ×N)Γ0

(i.e., the trace of
Curlt E ×N on Γ0, where N is a suitable extension of the normal). In particular, let

Ecomp(Ω) := {∇Su : u ∈ C 2(Ω̄,R3)} ⊂ C 1(Ω̄,S3).

One has

D1 : C 1(Ω̄,S3)→ C 1(Γ̄0) (4.4)

E ∈ Ecomp(Ω) 7→ D1(E) = EΓ0
∈ C 1(Γ̄0), (4.5)
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and

D2 : C 1(Ω̄,S3)→ C (Γ̄0) (4.6)

E ∈ Ecomp(Ω) 7→ D2(E) = ( Curlt E ×N)Γ0
∈ C (Γ̄0). (4.7)

In the following result, trace operators will be introduced in a weak form. While T 0 and T 1

are extensions of (4.2) and (4.3), respectively, the operators D̄2 and D̄1 stand for the traces of
Curlt E ×N and E on ∂Ω, respectively.

Corollary 4.5 (Weak trace operators). Let Φ ∈ H2(Ω,S3), with γ0(Φ) ∈ H3/2(∂Ω,S3) the
boundary trace of Φ. Let γi(Φ) ∈ H1/2(∂Ω,S3) (i = 1, 2) the boundary traces of ∇Φ · N and
Curlt Φ×N for i = 1 or i = 2, respectively. Let E ∈ Hinc(Ω).

Then there exists2 T 0(E) ∈ H−1/2(∂Ω) :=
(
H1/2(∂Ω,S3)

)′
such that

〈T 0(E), γ1(Φ)〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉, (4.8)

for all Φ such that γ0(Φ) = 0. Moreover, there exists T 1(E) ∈ H−3/2(∂Ω) :=
(
H3/2(∂Ω,S3)

)′
such that

〈T 1(E), γ0(Φ)〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉, (4.9)

for all Φ such that γ1(Φ) = 0.
Furthermore, there exists D̄2(E) ∈ H−3/2(∂Ω) such that

〈D̄2(E), γ0(Φ)〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉, (4.10)

for all Φ such that γ2(Φ) = 0. Moreover, there exists D̄1(E) ∈ H−1/2(∂Ω) such that

〈D̄1(E), γ2(Φ)〉 := 〈 inc E,Φ〉 − 〈E, inc Φ〉, (4.11)

for all Φ such that γ0(Φ) = 0, respectively.

Here symbol 〈·〉 stands for the of duality product in appropriate spaces.

Proof. By the Green formula (4.1), let us define the linear functional on H1/2(∂Ω) by

〈T 0(E), γ1〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉,
where Φ ∈ H2(Ω,S3) satisfies γ0(Φ) = 0 and γ1(Φ) = γ1 for a given γ1 ∈ H3/2(∂Ω); define also
the linear functional on H3/2(∂Ω) by

〈T 1(E), γ0〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉,
where Φ ∈ H2(Ω,S3) satisfies γ1(Φ) = 0 and γ0(Φ) = γ0 for a given γ0 ∈ H1/2(∂Ω). First
observe that T i(E) (i = 0, 1) does not depend on the chosen extension. If Φ1,Φ2 are two such
extensions, then their difference has zero trace and

0 = 〈E, inc (Φ1 − Φ2)〉 − 〈 inc E,Φ1 − Φ2〉,
by (4.1), since γ0(Φ1−Φ2) = γ1(Φ1−Φ2) = 0. It has been proved in [1] that a lifting operator
L∂Ω : H1/2(∂Ω,S3)×H3/2(∂Ω,S3)→ H2(Ω,S3) exists and can be chosen so that by its linearity
and continuity (note that in Lemma 3.11. of [1] such a lifting can be taken solenoidal on the
boundary), it holds (i = 0, 1)

|〈T i∗(E), γi〉| ≤ C (‖E‖L2 + ‖ inc E‖L2) ‖L∂Ω(γi)‖H2(Ω)

≤ C (‖E‖L2 + ‖ inc E‖L2) ‖γi‖H3/2−i(∂Ω),

achieving the proof of the first two statements.

As for the last one, take E ∈ C2(Ω̄,S3) and η ∈ H2(Ω,S3) such that γ2(η) = 0 and compute
by a series of integrations by parts,∫

Ω

E · inc ηdx =

∫
Ω

Curl E · Curlt ηdx =

∫
Ω

Curlt E · Curl ηdx

=

∫
Ω

inc E · ηdx+

∫
∂Ω

Curlt E ×N · ηdS(x). (4.12)

2There is no need to write H
1/2
0 (∂Ω, S3) since the boundary is a closed surface and this space is defined by

density of smooth functions with compact support.
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By (4.7), one has

〈D2(E), γ0〉 = 〈E, inc Φ〉 − 〈 inc E,Φ〉, (4.13)

where Φ ∈ H2(Ω,S3) satisfies γ0(Φ) = γ0 and γ2(Φ) = 0. Now, let E ∈ Hinc(Ω) and define

〈D̄2(E), γ0〉 := 〈E, inc Φ〉 − 〈 inc E,Φ〉 (4.14)

where Φ ∈ H2(Ω,S3) satisfies γ0(Φ) = γ0 and γ2(Φ) = 0. By the above lifting operator L∂Ω

and provided Lemma 4.1 (which states that given the curl transpose and the value of E on the
boundary yields the tangential components of ∂NE), one obtains

|〈D̄2(E), γ0〉| ≤ C (‖E‖L2 + ‖ inc E‖L2) ‖γ0‖H3/2(∂Ω), (4.15)

whence linearity and continuity of D̄2 in H−3/2(∂Ω).
Inverting the roles of E and η in (4.12), and defining

〈D̄1(E), γ2〉 := 〈 inc E,Φ〉 − 〈E, inc Φ〉, (4.16)

where Φ ∈ H2(Ω,S3) satisfies γ0(Φ) = 0 and γ2(Φ) = γ2, also yields linearity and continuity of
D̄1 in H−1/2(∂Ω), achieving the proof. �

Obviously (4.17) holds for any γ0 ∈ C∞c (Γ0) and hence

|〈D̄2(E), γ0〉| ≤ C (‖E‖L2 + ‖ inc E‖L2) ‖γ0‖H3/2(Γ0), (4.17)

for any γ0 ∈ H3/2
0 (Γ0). A similar reasoning can be made for D1 and hence (4.5) and (4.7) can

be extended as follows:

D̄1,0Hinc(Ω)→ H−1/2(Γ0) (4.18)

D̄2,0 : Hinc(Ω)→ H−3/2(Γ0). (4.19)

4.3. Saint-Venant conditions and Beltrami decomposition. The following result is given
for the sake of generality in Lp(Ω) with 1 < p <∞ but should here be considered for p = 2.

Theorem 4.6 (Saint-Venant compatibility conditions in Lp [14]). Let Ω ⊆ R3 be a simply-
connected domain, let 1 < p < +∞, and let E ∈ Lp(Ω,S3) be a symmetric tensor. Then

inc E = 0 in W−2,p(Ω,S3) ⇐⇒ E = ∇Su

for some u ∈W 1,p(Ω,R3). Moreover, u is unique up to rigid displacements.

The following result is again given for the sake of generality in Lp(Ω) with 1 < p < ∞ but
should here be considered for p = 2.

Theorem 4.7 (Beltrami decomposition in Lp [14]). Assume that Ω is simply-connected. Let
p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then, For any u0 ∈ W 1/p,p(∂Ω), there
exists a unique u ∈ W 1,p(Ω,R3) with u = u0 on Γ0 ⊂ ∂Ω and a unique F ∈ Lp(Ω,S3) with
Curl F ∈ Lp(Ω,R3×3), inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω such that

E = ∇Su+ inc F. (4.20)

We call ∇Su the compatible part and inc F the (solenoidal) incompatible part of the Beltrami
decomposition.

Observe that if inc E = 0 in Ω and u0 = 0 on Γ0 then u is uniquely determined such that

E = ∇Su, (4.21)

since F = 0 is the unique solution of the decomposition. Indeed, u is the unique solution of

− div
(
∇Su

)
= −div E in Ω,

with as boundary conditions, u = 0 on Γ0 and (∇Su)N = EN on ∂Ω \ Γ0. Now, if there were
two solutions F1 and F2 satisfying (4.20), then inc (F1−F2) = 0, which by Theorem 4.6 implies
that F1 − F2 = ∇Sv for some v, whence F1 = F2, since div

(
∇Sv

)
= 0 in Ω with (∇Sv)N = 0

on ∂Ω.
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5. The intrinsic approach with a anholonomic curvilinear frame: statement of
the main results

Definition 5.1 (Equivalence class). We write u=̇u0 on Γ0 to mean that there exists a rigid
displacement r ∈ R(Γ0) in Γ0, such that u− r = u0.

Lemma 5.2. The following conditions are equivalent:

(i) e ∈ C 1(Ω̄) ∩H2
Γ0;comp(Ω),

(ii) there exists a unique u ∈ C2(Ω̄) ∩H3(Ω,R3) such that e = ∇Su and u = 0 on Γ0. It
also holds

u=̇0 on Γ0 ⇐⇒ e = 0 = Curlt e×N on Γ0.

Proof. If e ∈ C 1(Ω̄) ∩ H2
Γ0;comp(Ω), then inc e = 0 and by Theorems 4.6 and 4.7, there exists

a unique u ∈ C2(Ω̄) ∩ H3(Ω,R3) such that e = ∇Su and u = 0 on Γ0. Moreover, e = 0 =
Curlt e×N on Γ0 and hence Theorem 4.3 entails that γ](e) = ρ](e) = 0. Hence Theorem 3.4
yields u=̇0 on Γ0. Now, u ∈ R(Γ0) implies by (3.40) and Theorem 4.3 that e = 0 = Curlt e×N
on Γ0. �

Now, for e ∈ HΓ0;comp(Ω) Theorem 4.6 yields e = ∇Su, where uniqueness of u follows as
soon as H1(Γ0) > 0 [4]. Moreover, Corollary 4.5 provides an extension sense to the traces,
since from (4.16) it follows that e ∈ H−1/2(∂Ω) and from (4.17) that Curlt e ∈ H−3/2(∂Ω). In
particular for any e ∈ HΓ0;comp(Ω) there exists a sequence en ∈ C 1(Ω̄)∩H2

Γ0;comp(Ω) such that

en → e strongly in L2(Ω,S3). Of course by Korn’s inequality, it also holds un → u strongly in
H1(Ω,R3).

By the above considerations (in particular the weak traces of Section 4.2) and classical
density arguments, we are now in position to state and prove a general form of Lemma 5.2.
The following theorem is a restatement of Theorem 3.4 without appealing to the change of
metric and curvature tensors as in the original version of [5], rather by letting e belong to a
specific function space.

Theorem 5.3 (Intrinsic version of the homogeneous condition). The following conditions are
equivalent:

(i) e ∈ HΓ0;comp(Ω),
(ii) there exists a unique u ∈ H1(Ω) such that e = ∇Su and u = 0 on Γ0. It also holds

u=̇0 on Γ0 ⇐⇒ D̄1,0(e) = D̄2,0(e) = 0,

where Di are the boundary operators given by (4.18) and (4.19) for i = 1 and i = 2,
respectively.

Let us remark that the non-homogeneous problem could be considered in this setting, too.
In contrast with Theorem 5.4 it is not clear how the nonhomogeneous boundary condition may
be handled by means of the change of metric and curvature tensors as in the original version
of [5]. Within our formalism, it is immediate, as stated in the following result.

Theorem 5.4 (Intrinsic version of the non-homogeneous condition). Let u0 ∈ H3/2(Γ0,R3).
If e ∈ Hcomp(Ω), there exists a unique u ∈ H1(Ω) such that e = ∇Su and u = u0 on Γ0. It also
holds

u=̇u0 on Γ0 ⇐⇒ D̄1,0(e−∇S û) = D̄2,0(e−∇S û) = 0,

where û = L (u0) is a H1-boundary lifting of u0.

Proof. The first part of the statement follows from Saint-Venant compatibility condition and
Beltrami decomposition in L2 (Theorems 4.6 and 4.7) where the rigid displacement is fixed by
the condition u = u0 on Γ0. The second part is an obvious consequence of Theorem 5.3. �

Definition 5.5. We introduce that following quotient space with respect to the equivalence
relation of Definition 5.1:

Ḣ1
Γ0

(Ω,R3) = H1
Γ0

(Ω,R3)/R(Γ0) = {u ∈ H1(Ω,R3) : u=̇0 on Γ0}.
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Corollary 5.6. The map

F? : HΓ0;comp(Ω)→ Ḣ1
Γ0

(Ω,R3) : e 7−→ F?(e) = u s.t. e = ∇Su (5.1)

is well defined, linear and continuous with respect to the L2-norm.

Proof. Well-definedness and linearity follow from Theorem 5.3, and continuity from Korn in-
equality [14]. �

It is now obvious that the strong form of linearized elasticity may be rewritten as a variational
problem in terms of the compatible strain e = e(u) = ∇Su.

Theorem 5.7 (Intrinsic version of linearized elasticity). The variational problem

inf
e∈HΓ0;comp(Ω)

E (e) =
1

2

∫
Ω

C−1e · edx−
∫

Ω

f · F ?(e)dx−
∫
∂Ω\Γ0

g · F ?(e)dS(x),

achieves its minimum e?, which satisfies the strong form −div
(
C−1e?

)
= f in Ω

e? = Curlt e? ×N = 0 on Γ0(
C−1e?

)
N = g on ∂Ω \ Γ0

,

where the traces are intended in a weak sense. Furthermore u? := F ?(e?) satisfies −div
(
C−1∇Su?

)
= f in Ω

u?=̇0 on Γ0(
C−1∇Su?

)
N = g on ∂Ω \ Γ0

.

Proof. By Korn inequality, it is easily computed that 0 > E (e) > C‖e‖L2 − β for some C > 0
and β ≥ 0. Existence follows by the direct method, since e 7→ E (e) is continuous by Corollary
5.6. �

Remark that the non-homogeneous case can also be written as a variational problem in e,
by a simple boundary lifting, and change of variables.

Theorem 5.7 is the counterpart of Theorems 7.1 and 7.2. in [5]. However, instead of a
condition on the variations of metric curvature, which we believe is unease to give a clear
phiscal meaning, here we give a condition on the strain and on the Frank tensor on Γ0, where
both bear a precise physical meaning. Moreover, our formalism also allows one to write the
problem in a variationla manner, since the boundary condition on the compatible strain is
included in the function space HΓ0;comp(Ω).

6. Discussion and concluding remarks

6.1. Application to multiscale analysis of dislocations. A mesoscopic dislocation is a
loop L in a crystal Ω which renders the strain field singular, because it implies a behaviour
of the strain O (1/d(·,L)), with d(x,L) the distance from x ∈ Ω to L. This is due to the
constrain

∮
CL
∇udH1 = B, where B is the jump of the displacement vector, called the Burgers

vector, constant on L and CL, a circuit around the line L. Furthermore, ∇u is the absolutely
continuous part of the distributional derivative Du = ∇uL 3 + B ⊗NH2

SL
, with SL a surface

enclosed by CL [16]. By Stokes theorem, one has Curl ∇u = −ΛTL = B ⊗ τH1
L which implies

(as proved in [20]) that

− inc e = Curl (ΛL −
I2
2

tr ΛL),

where e := ∇Su ∈ L1(Ω) is the symmetric incompatible strain. As a consequence of the strain
being O (1/d(·,L)) the potential energy

E (e) :=
1

2

∫
Ω

C−1e · edx−
∫

Ω

f · F ?(e)dx−
∫
∂Ω\Γ0

g · F ?(e)dS(x)

is unbounded, because so is the stored elastic energy

W (e) :=
1

2

∫
Ω

C−1e · edx.
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Let Lε be a finite family of dilute dislocations, whose number is bounded by Nε. Let eε be
a symmetric strain satisfying inc eε = ΛLε in Ω and êε their cut-off, i.e. êε = 0 in a tubular
neigbourhood of Lε of a certain radius dependent on ε. Let us consider the rescaled stored
elastic energy

Wε(êε; ΛLε) =
1

Nε| log ε|

∫
Ω

1

2
C−1êε · êεdx,

We wonder whether the functional Wε do converge in an appropriate sense, as for instance of
Gamma-convergence [6]. A crucial step when dealing with Gamma-convergence, is to determi-
nate the topology involved, and hence to know the functional spaces inherent to the problem.
Here, ΛLε is a bounded Radon measure, and the strains êε belong to L2(Ω,S3). Thanks to
our formalism we could consider the case in which the displacement is prescribed on Γ0, as in
Therorem 5.7, that is, we take êε ∈ HΓ0;comp(Ω) ⊂ L2(Ω,S3). The problem is thus to compute

Γ− lim
ε→0

Wε(êε; ΛLε).

There are good reasons to believe (but is hard to prove, and will be the aim of a future work)
that this limit writes as

W (ē) +

∫
Ω

ϕ(
dµ

d|µ|
)d|µ|,

where êε√
Nε| log ε|

→ ē ∈ HΓ0;comp(Ω) weakly in L2, and ΛLε → µ in the Radon measure sense,

and for some ϕ to be determined. Now, let ΛL be fixed and set

Eε(êε,ΛL) := Wε(êε; ΛL)−
∫

Ω

f · F ?(êε)dx−
∫
∂Ω\Γ0

g · F ?(êε)dS(x).

Then the above postulated Gamma-convergence result together with Corollary 5.6 and Theorem
5.7 yield

Γ− lim
ε→0

 inf
êε∈HΓ0;comp(Ω)

inc e=ΛL

Eε(êε; ΛL)

 = E (e?) +

∫
L
ϕ(B ⊗ τ)dH1,

where ϕ is interpreted as a line-tension functional accounting for the core regularization of the
dislocations, i.e., related to the self energy of the dislocation network.

Summarizing, our formalism of the intrinsic approach will allow us address the aforemen-
tioned homogenization problem, where one passes from a singular elasticity problem at the
mesoscopic scale, to a regularized macroscopic elasto-plastic model, where the macroscopic
plasticity is modelled by means of the limit measure µ. Note that it is important in disloca-
tion modeling to be able to consider a complete boundary-value problem of mixed type, since
typical crystals, in particular in industrial crystal growth processes, show force-free portion of
their boundary together with interfaces subjected to an imposed displacement.

6.2. General conclusion. The motivation for this work was the study of dislocations where
the displacement must be replaced by the strain as model variable. This work represents the
first step towards a systematic use of the Frank tensor in various contexts, and in particular
in the study of dislocations, where it most naturaly appears in the form of its curl as the
incompatibility tensor, that is, by Kröner formula [12], as a measure of the dislocation density
in the body:

inc ε = Curl κ,

with κ the contortion tensor as related to the dislocation density Λ by κ := Λ − I2
2 tr Λ, and

ε the elastic strain, related to the Cauchy stress σ by the constitutive law ε = Cσ. For this
reason, this work will permit various contributions in dislocation modelling, in particular for
deaqling with homogenization, as briefly exposed in Section 6.1.

The original intrinsic formulation by Ph. Ciarlet and C. Mardare is also at the origin of the
present work. The authors have in mind various applications in shell and plate theories, and
the definitive impact of such a novel presentation will certainly appear clear in the near future.
Therefore, also the role of the Frank tensor, related to the rotation gradient,

Curlt ε = ∇w,
will presumably play a role in variational formulations of low-dimensional, membrane theories.
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Geom. Mech., 2(3), 2010.
[19] N. Van Goethem. Direct expression of incompatibility in curvilinear systems. The ANZIAM J., 2016.
[20] N. Van Goethem. Incompatibility-governed singularities in linear elasticity with dislocations. Math. Mech.

Solids, (https://hal.archives-ouvertes.fr (# hal-01203034)), 2016.

Universidade de Lisboa, Faculdade de Ciências, Departamento de Matemática, CMAF+CIO, Alameda
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