Logic and algebraic varieties in non-archimedean fields

Mário J. Edmundo (Ciências UL/CMAFelO)

Encontros Abertos do CMAFelO 10/09/2020 - Joint with: P. Cubides and Y. Ye;

- Joint with: P. Cubides and Y. Ye;
- Builds on:
 - · Hrushovski and Loeser approach to Berkovich;

- Joint with: P. Cubides and Y. Ye;
- Builds on:
 - · Hrushovski and Loeser approach to Berkovich;
 - ideas from previews work on cohomology (E. with Peatfield, Jones and Prelli; Delfs)

Classical setting

Classical setting

Work in

$(\mathbb{C}, 0, 1, +, \cdot)$

an algebraically closed field (ACF). Want to understand Quasi-projective varieties, e.g. (locally of the form)

 $V = \{x \in \mathbb{C}^n : f_1(x) = \ldots = f_l(x) = 0\}$

with $f_i \in \mathbb{C}[X_1, \ldots, X_n]$ polynomials.

Classical setting ...

Here we have the usual archimedean norm

 $| : \mathbb{C} \to \mathbb{R}_{\geqslant 0}$

i.e.:

Classical setting ...

Here we have the usual archimedean norm

 $| |: \mathbb{C} \to \mathbb{R}_{\geq 0}$

i.e.:

- |f| = 0 iff f = 0;
- $|f \cdot g| = |f| \cdot |g|;$
- $|f + g| \leq |f| + |g|$ (archimedean property)

Classical setting ...

Here we have the usual archimedean norm

 $| |: \mathbb{C} \to \mathbb{R}_{\geq 0}$

i.e.:

- |f| = 0 iff f = 0;
- $|f \cdot g| = |f| \cdot |g|;$
- $|f + g| \leq |f| + |g|$ (archimedean property)

Moreover, $(\mathbb{C}, 0, 1, +, \cdot)$ is complete for the norm topology.

- $V^{\mathrm{an}} = V$ (as a set);
- ► Put on V^{an} the induced norm topology.

- $V^{\mathrm{an}} = V$ (as a set);
- \blacktriangleright Put on V^{an} the induced norm topology.

Then away from a small set of singularities, $V^{\rm an}$ is a complex analytic manifold, in particular, a very nice locally compact topological space.

- $V^{\mathrm{an}} = V$ (as a set);
- \blacktriangleright Put on $\overline{V^{\mathrm{an}}}$ the induced norm topology.

Then away from a small set of singularities, $V^{\rm an}$ is a complex analytic manifold, in particular, a very nice locally compact topological space.

Examples:

- If V is the projective space \mathbb{P}^1 , then V^{an} is the Riemann sphere.
- If V is an elliptic curve (e.g. given by $y^2 = ax^3 + bx^2 + cx + d$), then V^{an} is a complex torus.

- $V^{\mathrm{an}} = V$ (as a set);
- \blacktriangleright Put on $\overline{V^{\mathrm{an}}}$ the induced norm topology.

Then away from a small set of singularities, $V^{\rm an}$ is a complex analytic manifold, in particular, a very nice locally compact topological space.

Examples:

- If V is the projective space \mathbb{P}^1 , then V^{an} is the Riemann sphere.
- If V is an elliptic curve (e.g. given by $y^2 = ax^3 + bx^2 + cx + d$), then V^{an} is a complex torus.

How to distinguish these (or other such) objects in \mathbb{C}^2 ?

- $V^{\mathrm{an}} = V$ (as a set);
- \blacktriangleright Put on V^{an} the induced norm topology.

Then away from a small set of singularities, $V^{\rm an}$ is a complex analytic manifold, in particular, a very nice locally compact topological space.

Examples:

- If V is the projective space \mathbb{P}^1 , then V^{an} is the Riemann sphere.
- If V is an elliptic curve (e.g. given by $y^2 = ax^3 + bx^2 + cx + d$), then V^{an} is a complex torus.

How to distinguish these (or other such) objects in \mathbb{C}^2 ? Use cohomology

$$H^*_{\mathrm{sing}}(V^{\mathrm{an}};\mathbb{C})\simeq H^*(V^{\mathrm{an}};\mathbb{C})\simeq H^*_{dR}(V^{\mathrm{an}})$$

Also, ...

Also, ... identifying $\mathbb C$ with $\mathbb R^2,$ V^{an} is sub-analytic and we have:

Also, ... identifying $\mathbb C$ with $\mathbb R^2$, V^{an} is sub-analytic and we have:

(A) (By Hironaka) $V^{\rm an}$ is sub-analytically homeomorphic to a finite simplicial complex.

Also, ... identifying \mathbb{C} with \mathbb{R}^2 , V^{an} is sub-analytic and we have:

(A) (By Hironaka) $V^{\rm an}$ is sub-analytically homeomorphic to a finite simplicial complex.

(B)

- $H^p(V^{\mathrm{an}}; L)$ are finitely generated;
- $H^{p}(V^{\mathrm{an}}; L) = 0$ for $p > 2 \dim V$.

(here L is a finitely generated module over a noetherian ring)

Also, ... identifying \mathbb{C} with \mathbb{R}^2 , V^{an} is sub-analytic and we have:

(A) (By Hironaka) $V^{\rm an}$ is sub-analytically homeomorphic to a finite simplicial complex.

(B)

- $H^p(V^{\mathrm{an}}; L)$ are finitely generated;
- $H^p(V^{\mathrm{an}}; L) = 0$ for $p > 2 \dim V$.

(here L is a finitely generated module over a noetherian ring)

Note: The same holds for cohomology with compact supports

 $H_c^*(V^{\mathrm{an}};L)$

What happens if we work in an arbitrary algebraically closed field (ACF) $(K, 0, 1, +, \cdot)$

and consider Quasi-projective varieties, e.g. (locally of the form) $V=\{x\in K^n: f_1(x)=\ldots=f_l(x)=0\}$

with $f_i \in K[X_1, \ldots, X_n]$ polynomials.

What happens if we work in an arbitrary algebraically closed field (ACF) $(K, 0, 1, +, \cdot)$

and consider quasi-projective varieties, e.g. (locally of the form) $V = \{x \in K^n : f_1(x) = \ldots = f_l(x) = 0\}$ with $f_l \in K[X_1, \ldots, X_n]$ polynomials.

with $f_i \in K[X_1, \ldots, X_n]$ polynomial: There is no norm!

What happens if we work in an arbitrary algebraically closed field (ACF) $(K,0,1,+,\cdot)$

and consider quasi-projective varieties, e.g. (locally of the form)

 $V = \{x \in K^n : f_1(x) = \ldots = f_l(x) = 0\}$

with $f_i \in K[X_1, ..., X_n]$ polynomials. There is no norm! Alternatives: - equip V with the Zariski topology ...

What happens if we work in an arbitrary algebraically closed field (ACF) $(K, 0, 1, +, \cdot)$

and consider quasi-projective varieties, e.g. (locally of the form)

 $V = \{x \in K^n : f_1(x) = \ldots = f_l(x) = 0\}$

with $f_i \in K[X_1, \ldots, X_n]$ polynomials.

There is no norm! Alternatives:

- equip V with the Zariski topology ... But we get very few open subsets...

•••

- Grothendieck:

- Grothendieck:

► Replace V by the associated scheme, e.g. (locally of the form)

 $\operatorname{Spec}(K[V]) = \{x : x \text{ is a prime ideal of } K[V]\}$

where $K[V] = K[X_1, \ldots, X_n]/I[V]$ and $I[V] = \langle f_1, \ldots, f_l \rangle$

· Replace Zariski topology by the étale site ...

- Grothendieck:

► Replace V by the associated scheme, e.g. (locally of the form)

 $\operatorname{Spec}(K[V]) = \{x : x \text{ is a prime ideal of } K[V]\}$

where $K[V] = K[X_1, \dots, X_n]/I[V]$ and $I[V] = \langle f_1, \dots, f_l \rangle$

· Replace Zariski topology by the étale site ...

Note: $V \subseteq \text{Spec}(\overline{K[V]})$ identifying (x_1, \ldots, x_n) with the maximal ideal $\langle X_1 - x_1, \ldots, X_n - x_n \rangle$.

... and, if V is a scheme as above then, for étale cohomology we have: (B)

- \vdash $H_c^p(V_{et}; L)$ are finite;
- $H^{p}(V_{et}; L) = 0$ for $p > 2 \dim V;$
- If K' is an algebraically closed extension of K, then

 $H_c^*(V_{et};L) \simeq H_c^*(V_{K',et};L)$

• (Artin) If $K = \mathbb{C}$, then

 $H^*_c(V_{et};L) \simeq H^*_c(V^{\mathrm{an}};L)$ and $H^*(V_{et};L) \simeq H^*(V^{\mathrm{an}};L)$

(here L is a finite field)

... and, if V is a scheme as above then, for étale cohomology we have: (B)

- $H_c^p(V_{et}; L)$ are finite;
- $H^{p}(V_{et}; L) = 0$ for $p > 2 \dim V;$
- If K' is an algebraically closed extension of K, then

 $H_c^*(V_{et};L) \simeq H_c^*(V_{K',et};L)$

• (Artin) If $K = \mathbb{C}$, then

 $H^*_c(V_{et};L) \simeq H^*_c(V^{\mathrm{an}};L)$ and $H^*(V_{et};L) \simeq H^*(V^{\mathrm{an}};L)$

(here L is a finite field)

Note: finiteness and invariance holds without supports if $|L| \neq 0$ in K.

Now work in an arbitrary ACF

 $(K, 0, 1, +, \cdot)$

equipped with a non-archimedean norm $| : K \to \mathbb{R}_{\geq 0}$, i.e.:

Now work in an arbitrary ACF

 $(K, 0, 1, +, \cdot)$

equipped with a non-archimedean norm $| : K \to \mathbb{R}_{\geq 0}$, i.e.:

- |f| = 0 iff f = 0;
- $|f \cdot g| = |f| \cdot |g|;$
- $|f + g| \leq \max\{|f|, |g|\}$ (non-archimedean property)

Now work in an arbitrary ACF

 $(K, 0, 1, +, \cdot)$

equipped with a non-archimedean norm $| : K \to \mathbb{R}_{\geq 0}$, i.e.:

- |f| = 0 iff f = 0;
- $|f \cdot g| = |f| \cdot |g|;$
- $|f + g| \leq \max\{|f|, |g|\}$ (non-archimedean property)

Assume also that K is a complete for topology of this norm.

Berkovich setting ...

Examples:

- Any ACF K with the trivial norm

$$|x| = egin{cases} 0 & ext{if } x = 0 \ 1 & ext{otherwise} \end{cases}$$

- \mathbb{C}_p the completion of the algebraic closure of \mathbb{Q}_p - the completion of \mathbb{Q} with the *p*-adic norm:

$$|x|_p = p^{-a}$$
 if $x = rac{p^a r}{s}$

with p, r, s relatively prime.

- $\mathbb{C}\{\{t\}\}\$ the field of Puiseaux series

$$f=\sum_{i=k}^{+\infty}a_it^{rac{i}{n}}$$
 some $n
eq 0$ and $k\in\mathbb{Z}$

i.e., the completion of the field of Laurent series $\mathbb{C}((t))$,

$$f=\sum_{i=k}^{+\infty}a_it^i$$
 some $k\in\mathbb{Z}$

(the fraction field of the ring of formal power series $\mathbb{C}[[t]]$) with the *t*-adic norm:

$$|f|_t=e^{-m}$$
 if $f=t^m(\sum_{i=0}^{+\infty}a_it^i)$

...

Now we have again the norm topology!

Now we have again the norm topology! But it is Bad (Balls are clopen, ... Objects are totally disconnected, not locally compact)... Alternatives:

Now we have again the norm topology! But it is Bad (Balls are clopen, ... Objects are totally disconnected, not locally compact)... Alternatives:

- (Tate) Rigid analytic geometry....
- Berkovich:

Now we have again the norm topology! But it is Bad (Balls are clopen, ... objects are totally disconnected, not locally compact)... Alternatives:

- (Tate) Rigid analytic geometry....
- Berkovich:
 - ► Replace V By

 $V^{\mathrm{an}} = \{(x, | \mid_x) : x \in \operatorname{Spec}(K[V]) \text{ and } | \mid_x : \overline{K(x) \to \mathbb{R}_{\geq 0}}\}$

where $| |_x$ extends $| |: K \to \mathbb{R}_{\geq 0}$.

▶ Put on V^{an} the coarsest topology making all $x \mapsto |f|_x$ continuous for all $f \in \mathcal{O}_V(U)$ and all $U \subseteq V$ Zariski open.

Now we have again the norm topology! But it is Bad (Balls are clopen, ... Objects are totally disconnected, not locally compact)... Alternatives:

- (Tate) Rigid analytic geometry....
- Berkovich:
 - ► Replace V By

 $V^{\mathrm{an}} = \{(x, | \mid_x) : x \in \operatorname{Spec}(K[V]) \text{ and } | \mid_x : \overline{K(x) \to \mathbb{R}_{\geq 0}}\}$

where $| |_x$ extends $| |: K \to \mathbb{R}_{\geq 0}$.

▶ Put on V^{an} the coarsest topology making all $x \mapsto |f|_x$ continuous for all $f \in \mathcal{O}_V(U)$ and all $U \subseteq V$ Zariski open.

Note: This new Van is a nice locally compact topological space.

In a long (84 pages) Inventiones paper of 1999, Berkovich shows:

•••

In a long (84 pages) Inventiones paper of 1999, Berkovich shows:

(A) (Under extra assumptions) $V^{\rm an}$ admits a deformation retraction to a finite simplicial complex.

(B)

- $H_c^p(V^{\mathrm{an}}; L)$ are finitely generated;
- $H^p(V^{\mathrm{an}}; L) = 0$ for $p > \dim V;$
- ► There is a finite Galois extension $K \leq K'$ such that for any non-archimeadean field extension $K' \leq K''$ we have

 $H_c^*(V^{\mathrm{an}}\widehat{\otimes}K';L)\simeq H_c^*(V^{\mathrm{an}}\widehat{\otimes}K'';L)$

(here L is a finitely generated module over a noetherian ring)

In a long (84 pages) Inventiones paper of 1999, Berkovich shows:

(A) (Under extra assumptions) $V^{\rm an}$ admits a deformation retraction to a finite simplicial complex.

(B)

- $H_c^p(V^{\mathrm{an}}; L)$ are finitely generated;
- $H^p(V^{\mathrm{an}}; L) = 0$ for $p > \dim V$;
- ► There is a finite Galois extension $K \leq K'$ such that for any non-archimeadean field extension $K' \leq K''$ we have

 $H_c^*(V^{\mathrm{an}}\widehat{\otimes}K';L)\simeq H_c^*(V^{\mathrm{an}}\widehat{\otimes}K'';L)$

(here L is a finitely generated module over a noetherian ring)

Note: finiteness and invariance holds without supports.

Hrushovski and Loeser setting

Hrushovski and Loeser setting

Now work in algebraically closed valued field, i.e. an ACF

 $(K, 0, 1, +, \cdot)$

equipped with a valuation val: $K \to \Gamma_{\infty}$, i.e.:

Hrushovski and Loeser setting

Now work in algebraically closed valued field, i.e. an ACF

 $(K, 0, 1, +, \cdot)$

equipped with a valuation val: $K \to \Gamma_{\infty}$, i.e.:

- $val(f) = \infty$ iff f = 0;
- $\operatorname{val}(f \cdot g) = \operatorname{val}(f) + \operatorname{val}(g);$
- $\operatorname{val}(f+g) \ge \min\{\operatorname{val}(f), \operatorname{val}(g)\}$

where $\Gamma = (\Gamma, 0, +, <)$ is an ordered abelian (divisible) group and ∞ is such that $\gamma < \infty$ for all $\gamma \in \Gamma$.

Note: If $\Gamma \subseteq \mathbb{R}$ i.e. valuations of rank one, then

valuations \leftrightarrow non-archimedean norms

with

 $\operatorname{val}() \rightarrow | = e^{-\operatorname{val}()}$

 $| \rightarrow \mathrm{val}() = -\mathrm{ln}(||)$

Note: If $\Gamma \subseteq \mathbb{R}$ i.e. valuations of rank one, then valuations \leftrightarrow non-archimedean norms

with

 $ext{val}() \rightarrow || = e^{- ext{val}()}$ $|| \rightarrow ext{val}() = -\ln(||)$

Note: In any ACVF we have the valuation topology!

Note: If $\Gamma \subseteq \mathbb{R}$ i.e. valuations of rank one, then

valuations \leftrightarrow non-archimedean norms

with

 $ext{val}() ext{ } o ext{ } | = e^{- ext{val}()}$

 $| | \rightarrow \operatorname{val}() = -\ln(| |)$

Note: In any ACVF we have the valuation topology! But it is Bad (Balls are clopen, ... Objects are totally disconnected, not locally compact)...

Using the model theory (logic) of ACVF, in a recent <u>BOOK</u> (2016), Hrushovski and Loeser introduce the model theoretic avatar of Berkovich analytification: Using the model theory (logic) of ACVF, in a recent <u>BOOK</u> (2016), Hrushovski and Loeser introduce the model theoretic avatar of Berkovich analytification:

► Replace V By

 $\widehat{V} = \{x : x \text{ is a } K \text{-definable type on } V \text{ orthogonal } \overline{\mathsf{to}} \Gamma_{\infty} \}$

• Put on \widehat{V} the topology with pre-basis

 $\{x \in \widehat{U} : (\operatorname{val} \circ f)_*(x) \in I\}$

with $U \subseteq V$ Zariski open, $f \in \mathcal{O}_V(U)$ and $I \subseteq \Gamma_\infty$ an open interval.

Using deep model theory/algebraic geometry tools, the main result of Hrushovski and Loeser <u>Book</u> shows that:

Using deep model theory/algebraic geometry tools, the main result of Hrushovski and Loeser <u>Book</u> shows that:

(A) \hat{V} admits a pro-definable (continuous) deformation retraction to a definable subset of Γ_{∞} .

Using deep model theory/algebraic geometry tools, the main result of Hrushovski and Loeser <u>Book</u> shows that:

(A) \widehat{V} admits a pro-definable (continuous) deformation retraction to a definable subset of Γ_{∞} .

(A') If K is a complete rank one valued field and K^{\max} is a canonical maximally complete extension of K, then:

Using deep model theory/algebraic geometry tools, the main result of Hrushovski and Loeser <u>Book</u> shows that:

(A) \hat{V} admits a pro-definable (continuous) deformation retraction to a definable subset of Γ_{∞} .

(A') If K is a complete rank one valued field and K^{\max} is a canonical maximally complete extension of K, then:

- $V^{\mathrm{an}} \widehat{\otimes} K^{\mathrm{an}}$ is canonically homeomorphic to $\widehat{V}(K^{\mathrm{max}})$;
- \blacktriangleright The pro-definable deformation retraction restricts to a deformation retraction of $V^{\rm an}$ to a definable subset of \mathbb{R}_{∞} .

Our work

Unlike in V^{an} there is no usefull topological cohomology in \widehat{V} ... What about theorem (B)?

Our work

Unlike in V^{an} there is no usefull topological cohomology in \widehat{V} ... What about theorem (B)?

In a long (bb pages) recent preprint, we introduce a <u>new site</u> in \widehat{V} , the $\widehat{v+g}$ -site and show for the $\widehat{v+g}$ cohomology:

Our work

Unlike in V^{an} there is no usefull topological cohomology in \widehat{V} ... What about theorem (B)?

In a long (bb pages) recent preprint, we introduce a new site in \hat{V} , the $\widehat{v+g}$ -site and show for the $\widehat{v+g}$ cohomology: (B)

- $H^p_c(\widehat{V}; L)$ are finitely generated;
- $H^p_c(\widehat{V}; L) = 0$ for $p > \dim V;$
- If K' is an algebraically closed valued field extension of K, then

 $H_c^*(\widehat{V};L) \simeq H_c^*(\widehat{V}(K');L)$

► If K is a complete rank one valued field, then there is a finite Galois extension $K \leq K'$ such that for any $K' \leq K''$ we have

 $H^*_c(\widehat{\mathcal{V}}(\mathcal{K}^{\max}); L) \simeq H^*_c(\widehat{\mathcal{V}}(\mathcal{K}^{\max})_{\mathrm{top}}; L) \simeq H^*_c(\mathcal{V}^{\mathrm{an}}\widehat{\otimes}\mathcal{K}''; L)$

(here L is a finitely generated module over a noetherian ring)

Final notes:

Final notes:

- We also show a theorem (B) for definable subsets of Γ_{∞}^n , more generally in the tropicalization of o-minimal expansions of ordered vector space over an ordered division ring.

Final notes:

- We also show a theorem (B) for definable subsets of Γ_{∞}^{n} , more generally in the tropicalization of o-minimal expansions of ordered vector space over an ordered division ring.
- Extra work is needed to get finiteness and invariance without supports.
- ... in this new world a lot of other stuff is still to be done.

