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Classical setting

Work in

(C, 0, 1,+, ·)

an algebraically closed field (ACF). Want to understand quasi-projective

varieties, e.g. (locally of the form)

V = {x ∈ Cn : f1(x) = . . . = fl(x) = 0}

with fi ∈ C[X1, . . . ,Xn] polynomials.
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Classical setting ...

Here we have the usual archimedean norm

| | : C→ R>0

i.e.:

- |f | = 0 iff f = 0;
- |f · g | = |f | · |g |;
- |f + g | 6 |f |+ |g | (archimedean property)

Moreover, (C, 0, 1,+, ·) is complete for the norm topology.
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...
So we can, let:

I V an = V (as a set);
I Put on V an the induced norm topology.

Then away from a small set of singularities, V an is a complex analytic

manifold, in particular, a very nice locally compact topological space.

Examples:

- If V is the projective space P1, then V an is the Riemann sphere.

- If V is an elliptic curve (e.g. given by y2 = ax3 + bx2 + cx + d), then V an

is a complex torus.

How to distinguish these (or other such) objects in C2? Use

cohomology

H∗sing(V
an;C) ' H∗(V an;C) ' H∗dR(V

an)
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Also, ...

identifying C with R2, V an is sub-analytic and we have:

(A) (By Hironaka) V an is sub-analytically homeomorphic to a finite

simplicial complex.

(B)
I Hp(V an; L) are finitely generated;
I Hp(V an; L) = 0 for p > 2 dimV .

(here L is a finitely generated module over a noetherian ring)

Note: The same holds for cohomology with compact supports

H∗c (V
an; L)
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Grothendieck setting

What happens if we work in an arbitrary algebraically closed field (ACF)

(K , 0, 1,+, ·)

and consider quasi-projective varieties, e.g. (locally of the form)

V = {x ∈ Kn : f1(x) = . . . = fl(x) = 0}

with fi ∈ K [X1, . . . ,Xn] polynomials.

There is no norm! Alternatives:

- equip V with the Zariski topology ... but we get very few open

subsets...
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- Grothendieck:

I Replace V by the associated scheme, e.g. (locally of the form)

Spec(K [V ]) = {x : x is a prime ideal of K [V ]}

where K [V ] = K [X1, . . . ,Xn]/I [V ] and I [V ] = 〈f1, . . . , fl〉
I Replace Zariski topology by the étale site ...

Note: V ⊆ Spec(K [V ]) identifying (x1, . . . , xn) with the maximal ideal

〈X1 − x1, . . . ,Xn − xn〉.
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... and, if V is a scheme as above then, for étale cohomology we have:

(B)
I Hp

c (Vet ; L) are finite;
I Hp(Vet ; L) = 0 for p > 2 dimV ;
I If K ′ is an algebraically closed extension of K , then

H∗c (Vet ; L) ' H∗c (VK ′,et ; L)

I (Artin) If K = C, then

H∗c (Vet ; L) ' H∗c (V
an; L) and H∗(Vet ; L) ' H∗(V an; L)

(here L is a finite field)

Note: finiteness and invariance holds without supports if |L| 6= 0 in K .
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Berkovich setting

Now work in an arbitrary ACF

(K , 0, 1,+, ·)

equipped with a non-archimedean norm | | : K → R>0, i.e.:

- |f | = 0 iff f = 0;
- |f · g | = |f | · |g |;
- |f + g | 6 max{|f |, |g |} (non-archimedean property)

Assume also that K is a complete for topology of this norm.
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Berkovich setting ...

Examples:

- Any ACF K with the trivial norm

|x | =

{
0 if x = 0
1 otherwise

- Cp the completion of the algebraic closure of Qp - the completion

of Q with the p-adic norm:

|x |p = p−a if x =
par

s

with p, r , s relatively prime.



...
- C{{t}} the field of Puiseaux series

f =

+∞∑
i=k

ai t
i
n some n 6= 0 and k ∈ Z

i.e., the completion of the field of Laurent series C((t)),

f =

+∞∑
i=k

ai t
i some k ∈ Z

(the fraction field of the ring of formal power series C[[t]]) with

the t-adic norm:

|f |t = e−m if f = tm(
+∞∑
i=0

ai t
i )
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Now we have again the norm topology!

But it is bad (balls are clopen, ...

objects are totally disconnected, not locally compact)... Alternatives:

- (Tate) Rigid analytic geometry....

- Berkovich:

I Replace V by

V an = {(x , | |x) : x ∈ Spec(K [V ]) and | |x : K (x)→ R>0}

where | |x extends | | : K → R>0 .
I Put on V an the coarsest topology making all x 7→ |f |x continuous for

all f ∈ OV (U) and all U ⊆ V Zariski open.

Note: This new V an is a nice locally compact topological space.
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...
In a long (84 pages) Inventiones paper of 1999, Berkovich shows:

(A) (Under extra assumptions) V an admits a deformation retraction to

a finite simplicial complex.

(B)
I Hp

c (V
an; L) are finitely generated;

I Hp(V an; L) = 0 for p > dimV ;
I There is a finite Galois extension K 6 K ′ such that for any

non-archimeadean field extension K ′ 6 K ′′ we have

H∗c (V
an⊗̂K ′; L) ' H∗c (V

an⊗̂K ′′; L)

(here L is a finitely generated module over a noetherian ring)

Note: finiteness and invariance holds without supports.
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Hrushovski and Loeser setting

Now work in algebraically closed valued field, i.e. an ACF

(K , 0, 1,+, ·)

equipped with a valuation val : K → Γ∞, i.e.:

- val(f ) =∞ iff f = 0;
- val(f · g) = val(f ) + val(g);
- val(f + g) > min{val(f ), val(g)}

where Γ = (Γ , 0,+,<) is an ordered abelian (divisible) group and ∞ is such

that γ <∞ for all γ ∈ Γ .
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Note: If Γ ⊆ R i.e. valuations of rank one, then

valuations ↔ non-archimedean norms

with

val( ) → | | = e−val( )

| | → val( ) = −ln(| |)

Note: In any ACVF we have the valuation topology! But it is bad (balls

are clopen, ... objects are totally disconnected, not locally compact)...
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...

Using the model theory (logic) of ACVF, in a recent book (2016),

Hrushovski and Loeser introduce the model theoretic avatar of

Berkovich analytification:

I Replace V by

V̂ = {x : x is a K-definable type on V orthogonal to Γ∞ }

I Put on V̂ the topology with pre-basis

{x ∈ Û : (val ◦ f )∗(x) ∈ I }

with U ⊆ V Zariski open, f ∈ OV (U) and I ⊆ Γ∞ an open interval.



...

Using the model theory (logic) of ACVF, in a recent book (2016),

Hrushovski and Loeser introduce the model theoretic avatar of

Berkovich analytification:

I Replace V by

V̂ = {x : x is a K-definable type on V orthogonal to Γ∞ }

I Put on V̂ the topology with pre-basis
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...
Note: V̂ it is still a bad topological space (e.g. not locally compact). But

(pro)-definable analogues of topological notions behave well.

Using deep model theory/algebraic geometry tools, the main result of

Hrushovski and Loeser book shows that:

(A) V̂ admits a pro-definable (continuous) deformation retraction to a

definable subset of Γ∞ .

(A’) If K is a complete rank one valued field and Kmax is a canonical
maximally complete extension of K , then:

I V an⊗̂K an is canonically homeomorphic to V̂ (Kmax);
I The pro-definable deformation retraction restricts to a

deformation retraction of V an to a definable subset of R∞ .
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Our work

Unlike in V an there is no usefull topological cohomology in V̂ ... What

about theorem (B)?

In a long (66 pages) recent preprint, we introduce a new site in V̂ , the

v̂+g-site and show for the v̂+g cohomology:

(B)
I Hp

c (V̂ ; L) are finitely generated;

I Hp
c (V̂ ; L) = 0 for p > dimV ;

I If K ′ is an algebraically closed valued field extension of K , then

H∗c (V̂ ; L) ' H∗c (V̂ (K ′); L)

I If K is a complete rank one valued field, then there is a finite Galois

extension K 6 K ′ such that for any K ′ 6 K ′′ we have

H∗c (V̂ (Kmax); L) ' H∗c (V̂ (Kmax)top; L) ' H∗c (V
an⊗̂K ′′; L)

(here L is a finitely generated module over a noetherian ring)
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Final notes:

- We also show a theorem (B) for definable subsets of Γn∞, more

generally in the tropicalization of o-minimal expansions of ordered

vector space over an ordered division ring.

- Extra work is needed to get finiteness and invariance without

supports.

- ... in this new world a lot of other stuff is still to be done.
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Thank you!


