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@ Classification Problems

© Moduli Spaces in Geometry

© Topological and Algebraic Invariants of Moduli Spaces

@ Star shaped Quivers and Polygon spaces
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Famous Classification Problems (discrete invariants)

@ Finite dimensional R or C vector spaces:
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@ Closed, orientable surfaces:
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(homeomorphism classes)

isomorphism classes)

Theorem (Classification of topological surfaces)

Every closed, orientable, topological surface is homeomorphic to a
connected sum of g € N tori.
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Famous Classification Problems (continuous invariants)

@ Conics in the plane:
ax? +2bxy + cy® =1

is an ellipse / hyperbola if ac — b?> > /ac — b? < 0.

Y
,1\/1

@ Square matrices, up to conjugation:
MEM)\IEB---@M)\“

for a sequence A1, -+, Ax € C, and each M), a direct sum of
Jordan blocks of eigenvalue \.
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Steps for a Classification Problem

@ Define our Universe - its elements
@ Observe common properties; Distinguish/Relate elements

@ List / Parametrize all elements (up to equivalence)
Discrete / Continuous
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Classification Problems in Mathematics:

© Universe: vector spaces; groups; topological spaces, manifolds,
functions ...

@ Equivalences: Morphisms between objects; isomorphisms
(homeo/diffeomorphism, ...)

© List / Parametrize / “Geometrize”: Invariants / Moduli spaces




Moduli spaces

What is a Moduli space?

Bernhard Riemann, 1857: "und es haengt
von 3g — 3 stetig veraenderlichen Groessen
ab, welche die Moduln dieser Klasse genannt
werden sollen".

(and it depends on 3g — 3 varying quantities,
which are called the moduli of this class)

A moduli space is a space parametrizing a given class of geometric
objects (up to equivalences), all belonging to the same “family”.

Toy Example: Ellipses in the plane:

ax? + 2bxy + cy? = 1, with ac — b?> > 0. /_\
The invariants A == ac — b?> and T :=a+ ¢ \\_/
completely classify ellipses, up to euclidean motions.
The moduli are (T, A) subject to 0 < A < TTZ.
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Toy Examples “from ancient Greece”

Problem 1: Lines in R” through 0:

The projective space P(R") = RP"! := (R"\ {0})/R*
Variation: Lines in C" through 0 are parametrized by
CP"1:=(C"\ {0})/C*. Action: (z1,--- .zp) ~ (M\z1," , A\zy)
Problem 2: Classify lines in the plane

L

Problem 3: Triangles in R2:
0 < a < b+c
0 < b < a+c
0 < ¢ < a+b

<L
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Toy Examples |l

Problem 4: Triangles in R?, up to scaling:

) .0 a 1
Problem 5: Invariants of conics, up to scaling:

imaginary

A

Jonics

-

Ellipses

Hyperbolas

(T,A)~(kT,k2A), keC* moduli space
T=a+c, A=ac—b?, is CP%Q

Problem 6: Invariants of Matrices (quiver representations!):

M
o—>0

o Sym"(C) = C"/S, k z {0,---,n}
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The “original” moduli space

Closed, orientable surfaces admit complex structures: Riemann
surfaces. And non-equivalent complex structures can be
parametrized via a moduli space.

Theorem (Poincaré, Koebe, 1904 - compact Riemann surfaces)
Every closed, orientable surface X admits a constant curvature
metric. Moreover, if g > 1 every such X is of the form:

X =H/T,
with T = m X C PSLyR discrete, acting by Mébius transformations

M ~ hom™(m X, PSL;R)/PSLR
dmM =3g—-3
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The moduli space of spatial polygons

Fix lengths a1, -+ ,am € Ry and let
Y™ = {(v1, - ,v) € S?(a1)x---xS*(am) | vi+va+- - 4vm = 0}

Moduli space of polygons with length vector «

Polm(a) = Y. /SO(3)

This moduli space is compact, but generally singular.
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Topological invariants - a brief tour

Let X be a compact finite dimensional manifold.

Facts: (1) The cohomology groups H¥(X,C) of X can be
computed from “triagulation data”.

(2) H¥(X) = H¥(X,C) do not depend on triangulation, only on
global topology!

(3) Each kth cohomology can be regarded as a functor:

Man — Vect.

We obtain a sequence of Betti numbers:
by = dim H°(X), by =dimHY(X), ---, b, =dimH"(X).
For compact connected, orientable manifolds of (real) dimension n:

Examples: The spheres by (S") = 0 for k £ 0, n.
The tori b (T") = (})-
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Poincaré polynomial

Definition
With b (X) = dimc H%(X, C), the Poincaré polynomial of X is:
Pe(X) = bi(X) ¥,

k>0

Integer / Polynomial invariants associated to geometric objects:
] Object M \ Euler char. x(M) \ Poincaré polynomial P¢(M) ‘

R" 1 t?
Yg 2—-2g 1+ 2gt+t?
sn 14+ (-1)" 1+1¢t"
CP" n+1 1+t%+ -+ t°"
Rep(Q) ?
Polm(c) ?
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Examples: invariants P / p for some moduli spaces

Theorem (Gothen, '94)

Let M be the moduli space of rank 3 Higgs bundles over a
Riemann surface of genus 2 and fixed degree 1 determinant. Then:
Pi(M) =1+ 3t +20t3 + 54t* + 416t> + 572t% + 37617 + 117t% +
32t% 4 47110 4 5611 + 42112 + 28¢13 + 16t + 8t1° 4 3¢1°.

The cohomology of a quasi-projective algebraic variety X (of
dimension d) decomposes into “Hodge pieces” of dimensions
hkPa(X), k,p,q € {0,--- ,2d}. Mixed Hodge polynomial:

w(X; tyu,v) = Z,w7th<””‘7’(X)t”(upve’7
Note: P:(X) = u(X,t,1,1), when X smooth and projective.

Theorem (F-Silva, '18)

Let M be the moduli space of representations of Z" into G. Then:

1
w(X; t,u,v) = WEUEW det(/ + tuvM,)".
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Star shaped quivers

Consider a quiver (= a bunch of arrows): PN
Q: o< o .
.,

Q= (V,A), V={0,1,---,m}, ACV xV.
We have the generalized Endomorphism space:
End(Q) = @Z’ZO W, dimW, = d,
Automorphism group: G(Q) := x7_; GL(W).
Representation space: Rep(Q)o = End(Q)/oG(Q)

Repm,n(Q)a = (C")™ [ o [GL(n, C) x (C*)7]
dimc Repm n(Q)a = (n—1)(m—n—1)
d:(n717"' 71)

Closely related with parabolic bundles over CP!,
Other quivers (with relations) - Calabi-Yau's in string theory!
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Equivalence: Algebraic +— Symplectic quotients

Let n =2, a = (a1,02, - ,am) € RT,. Then
End(Q) = {m vectors w; € C?}.
Define End,(Q) C End(Q) as those with |w;|? = «;.
Moment map:
o+ Enda(Q) = 5u(2)” = 50(3)",  pralA) == 7 (wiwi o

Theorem (A special case of Kempf-Ness, Kirwan's Theorem)

There is a diffeomorphism:
Repm2(Q)a=(CPH)™ /o SLyC = 15 (0)/SU(2) = Y™ / SO(3) = Polm(c)

Example: Let a = (1,1,1,1,1) (“equal sided” pentagons in R3)

Pols(c) = CP?4:4(CP2),

(4 blow-ups of CPP?) is a del Pezzo surface of degree 5 =
P;(Pols(a)) = 1 + 5t + t*.

v

The “moves” Pol,.,(a) — Pol..(a’) can be obtained by wall-crossing.
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Some references (please ask!)

Thank youl!
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