Classification

Carlos Florentino^{1,2}

¹Department of Mathematics, Fac. Ciências ²CMAFcIO - Univ. of Lisbon

Encontros Abertos CMAFcIO, Sep. 2020

Outline

- Classification Problems
- Moduli Spaces in Geometry
- Topological and Algebraic Invariants of Moduli Spaces
- 4 Star shaped Quivers and Polygon spaces

Famous Classification Problems (discrete invariants)

• Finite dimensional \mathbb{R} or \mathbb{C} vector spaces:

Closed, orientable surfaces:

Moduli spaces

(homeomorphism classes)

Theorem (Classification of topological surfaces)

Every closed, orientable, topological surface is homeomorphic to a connected sum of $g \in \mathbb{N}$ tori.

Famous Classification Problems (continuous invariants)

• Conics in the plane:

$$ax^2 + 2bxy + cy^2 = 1$$

is an ellipse / hyperbola if $ac - b^2 > /ac - b^2 < 0$.

• Square matrices, up to conjugation:

$$M \simeq M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_k}$$
,

for a sequence $\lambda_1, \cdots, \lambda_k \in \mathbb{C}$, and each M_{λ} a direct sum of Jordan blocks of eigenvalue λ .

Steps for a Classification Problem

Moduli spaces

- Define our *Universe* its elements
- Observe common properties; *Distinguish* / *Relate elements*
- List / Parametrize all elements (up to equivalence) Discrete / Continuous

Classification Problems in Mathematics:

- Universe: vector spaces; groups; topological spaces, manifolds, functions
- Equivalences: Morphisms between objects; isomorphisms (homeo/diffeomorphism, ...)
- List / Parametrize / "Geometrize": Invariants / Moduli spaces

What is a Moduli space?

Bernhard Riemann, 1857: "und es haengt von 3g - 3 stetig veraenderlichen Groessen ab, welche die Moduln dieser Klasse genannt werden sollen".

(and it depends on 3g - 3 varying quantities, which are called **the moduli** of this class)

A moduli space is a space parametrizing a given class of geometric objects (up to equivalences), all belonging to the same "family".

Toy Example: Ellipses in the plane: $ax^{2} + 2bxy + cy^{2} = 1$, with $ac - b^{2} > 0$. The invariants $\Delta := ac - b^2$ and T := a + ccompletely classify ellipses, up to euclidean motions.

The **moduli** are (T, Δ) subject to $0 < \Delta < \frac{T^2}{4}$.

Toy Examples "from ancient Greece"

Problem 1: Lines in \mathbb{R}^n through 0:

The projective space $\mathbb{P}(\mathbb{R}^n) \equiv \mathbb{RP}^{n-1} := (\mathbb{R}^n \setminus \{0\})/\mathbb{R}^*$

Variation: Lines in \mathbb{C}^n through 0 are parametrized by

 $\mathbb{CP}^{n-1} := (\mathbb{C}^n \setminus \{0\})/\mathbb{C}^*$. Action: $(z_1, \dots, z_n) \sim (\lambda z_1, \dots, \lambda z_n)$

Problem 2: Classify lines in the plane

Problem 3: Triangles in \mathbb{R}^2 :

$$0 < a < b+c$$

$$0 < c < a + b$$

Toy Examples II

Problem 4: Triangles in \mathbb{R}^2 , up to scaling:

Problem 5: Invariants of conics, up to scaling:

Problem 6: Invariants of Matrices (quiver representations!):

The "original" moduli space

Closed, orientable surfaces admit complex structures: Riemann surfaces. And non-equivalent complex structures can be parametrized via a moduli space.

Theorem (Poincaré, Koebe, 1904 - compact Riemann surfaces)

Every closed, orientable surface X admits a constant curvature metric. Moreover, if g>1 every such X is of the form:

$$X = \mathbb{H}/\Gamma$$
,

with $\Gamma \cong \pi_1 X \subset PSL_2\mathbb{R}$ discrete, acting by Möbius transformations

$$\mathcal{M} \simeq \mathsf{hom}^*(\pi_1 X, \mathit{PSL}_2\mathbb{R})/\mathit{PSL}_2\mathbb{R}$$

 $\mathsf{dim}\,\mathcal{M} = 3g - 3$

The moduli space of spatial polygons

Fix lengths $\alpha_1, \dots, \alpha_m \in \mathbb{R}_{>0}$ and let

$$Y_{\alpha}^{m} := \{(v_1, \cdots, v_r) \in S^2(\alpha_1) \times \cdots \times S^2(\alpha_m) \mid v_1 + v_2 + \cdots + v_m = 0\}$$

Moduli space of polygons with length vector α

$$Pol_m(\alpha) = Y_{\alpha}^m/SO(3)$$

This moduli space is compact, but generally singular.

Topological invariants - a brief tour

Let X be a compact finite dimensional manifold.

Facts: (1) The cohomology groups $H^k(X,\mathbb{C})$ of X can be computed from "triagulation data".

- (2) $H^k(X) \equiv H^k(X,\mathbb{C})$ do not depend on triangulation, only on global topology!
- (3) Each kth cohomology can be regarded as a functor: $Man \rightarrow Vect$.

We obtain a sequence of **Betti numbers**:

$$b_0 = \dim H^0(X), \quad b_1 = \dim H^1(X), \quad \cdots, b_n = \dim H^n(X).$$

For compact connected, orientable manifolds of (real) dimension n:

$$b_0 = b_n = 1$$

Examples: The spheres $b_k(S^n) = 0$ for $k \neq 0, n$. The tori $b_k(T^n) = \binom{n}{k}$.

Poincaré polynomial

Definition

With $b_k(X) = \dim_{\mathbb{C}} H^k(X, \mathbb{C})$, the Poincaré polynomial of X is:

$$P_t(X) = \sum_{k \geq 0} b_k(X) t^k,$$

Integer / Polynomial invariants associated to geometric objects:

Object IVI	Euler char. $\chi(NI)$	Poincare polynomial $P_t(NI)$
\mathbb{R}^n	1	t ⁿ
Σ_{g}	2 - 2g	$1+2gt+t^2$
S ⁿ	$1 + (-1)^n$	$1 + t^n$
\mathbb{CP}^n	n+1	$1+t^2+\cdots+t^{2n}$
Rep(Q)	?	?
$Pol_m(\alpha)$?	?

Examples: invariants P / μ for some moduli spaces

Theorem (Gothen, '94)

Let \mathcal{M} be the moduli space of rank 3 Higgs bundles over a Riemann surface of genus 2 and fixed degree 1 determinant. Then: $P_t(\mathcal{M}) = 1 + 3t^2 + 20t^3 + 54t^4 + 416t^5 + 572t^6 + 376t^7 + 117t^8 + 117t^8$ $32t^9 + 47t^{10} + 56t^{11} + 42t^{12} + 28t^{13} + 16t^{14} + 8t^{15} + 3t^{16}$

The cohomology of a quasi-projective algebraic variety X (of dimension d) decomposes into "Hodge pieces" of dimensions $h^{k,p,q}(X)$, $k,p,q \in \{0,\cdots,2d\}$. Mixed Hodge polynomial:

$$\mu(X;t,u,v) := \sum_{k,p,q} h^{k,p,q}(X) t^k u^p v^q,$$

Note: $P_t(X) = \mu(X, t, 1, 1)$, when X smooth and projective.

Theorem (F-Silva, '18)

Let \mathcal{M} be the moduli space of representations of \mathbb{Z}^r into G. Then:

$$\mu(X;t,u,v) = \frac{1}{|W|} \sum_{\sigma \in W} \det(I + tuvM_{\sigma})^{r}.$$

Star shaped quivers

Consider a quiver (= a bunch of arrows):

$$Q: \bullet \stackrel{a}{\longleftarrow} \bullet \stackrel{b}{\bigcirc} \bullet$$

$$Q = (V, A),$$
 $V = \{0, 1, \cdots, m\},$ $A \subset V \times V.$

We have the generalized Endomorphism space:

$$End(Q) := \bigoplus_{k=0}^{m} W_k, \quad dim W_k = d_k$$

Automorphism group: $G(Q) := \times_{k=1}^m GL(W_k)$.

Representation space: $Rep(Q)_{\alpha} = End(Q)//_{\alpha}G(Q)$

$$Rep_{m,n}(Q)_{\alpha} := (\mathbb{C}^n)^m /\!\!/_{\alpha} [GL(n,\mathbb{C}) \times (\mathbb{C}^*)^m]$$
 $\dim_{\mathbb{C}} Rep_{m,n}(Q)_{\alpha} = (n-1)(m-n-1)$
 $d = (n,1,\cdots,1)$

Closely related with **parabolic bundles** over \mathbb{CP}^1 . Other quivers (with relations) - Calabi-Yau's in string theory!

Equivalence: Algebraic ←→ Symplectic quotients

Let
$$n=2$$
, $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_m)\in\mathbb{R}^m_{>0}$. Then

 $End(Q) = \{m \text{ vectors } w_i \in \mathbb{C}^2\}.$

Define $End_{\alpha}(Q) \subset End(Q)$ as those with $|w_i|^2 = \alpha_i$.

Moment map:

$$\mu_{lpha}: \mathit{End}_{lpha}(Q)
ightarrow \mathfrak{su}(2)^* = \mathfrak{so}(3)^*, \qquad \mu_{lpha}(A) := \sum_{i=1}^m (w_i w_i^*)_0$$

Theorem (A special case of Kempf-Ness, Kirwan's Theorem)

There is a diffeomorphism:

$$Rep_{m,2}(Q)_{\alpha} = (\mathbb{CP}^1)^m /\!\!/_{\alpha} SL_2\mathbb{C} = \mu_{\alpha}^{-1}(0)/SU(2) = Y_{\alpha}^m/SO(3) = Pol_m(\alpha)$$

Example: Let $\alpha = (1, 1, 1, 1, 1)$ ("equal sided" pentagons in \mathbb{R}^3)

$$Pol_5(\alpha) = \mathbb{CP}^2 \# 4\overline{(\mathbb{CP}^2)},$$

(4 blow-ups of \mathbb{CP}^2) is a del Pezzo surface of degree 5 \Rightarrow $P_t(Pol_5(\alpha)) = 1 + 5t^2 + t^4$.

The "moves" $Pol_m(\alpha) \leftrightarrow Pol_m(\alpha')$ can be obtained by wall-crossing.

Thank you! Obrigado pela atenção!

- S. Mukai, An Introduction to Invariants and Moduli, Cambridge U. P. 2003
- F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton U. P, 1985
- A. Klyachko, Spatial polygons and stable configurations of points in the projective line, Alg. Geom. Appl, Aspects of Mathematics 25 1994.
- H. Derksen, J. Weyman, An introduction to quiver representations, Amer. Math. Soc. 2017
- S. Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis, Amer. Math. Soc. 2017