Optimal thinking in forest management with environmental concerns

Isabel Martins

Sinopse

1 Open problem

2 Methodologies

Basic forestry problem

Source: Os Espacialistas

Forest area $=21147.8$ ha $\#$ stands $=1363$ \# periods $=7$

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon

Clearcuts

Limiting clearcut size aims at reducing the impact on

- soil
- water quality
- wildlife
- scenic beauty
- ...

Mature patches

Forest patch $=$ Edge + Core area
Core area - interior area of the patch where ecological functioning is not impacted by the effect of immediately surrounding conditions

Edge - buffer area separating core area from outside influences

Edge and core-dependent species

Edge-dependent species

Core-dependent species

The core area of a forest patch is determined by the area, shape and immediately surrounding conditions of the patch

Core area

The core area of a forest patch is determined by the area, shape and immediately surrounding conditions of the patch

Area

Similar shapes

Smaller mature patches \longleftrightarrow Less amount of core area

3.14ha

0:3.14

7.7ha 1:7.7

Shape

Similar areas

Elongated or complex shapes \longleftrightarrow Less amount of core area

Basic + clearcut constraints

Source: Os Espacialistas

Basic + clearcut constraints

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon
- For each period, the area of every clearcut does not exceed the maximum allowed size

Basic + clearcut + habitat constraints

Source: Os Espacialistas

Basic + clearcut + habitat constraints

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon
- For each period, the area of every clearcut does not exceed the maximum allowed size
- Each habitat is a mature patch meeting a minimum core area
- In each period, the total core area inside habitats is greater than or equal to a minimum total core area

Operations Research challenges in forestry: $\mathbf{3 3}$ open

 problemsMikact Rönnqvist ${ }^{1.2}$. Sophic D.Amours ${ }^{1}$, Andres Wcintraub ${ }^{3}$.
Alejandro Jofre ${ }^{4}$. Eldon Gunn ${ }^{5}$ Rohert G. Haight ${ }^{6}$.
David Martell ${ }^{7}$. Alan T. Murray ${ }^{8}$. Carlos Romeru ${ }^{9}$

> Publiubed online: 16 June 2015
> OSpringer Soience + Baciness Media New Yorkk 2015

Abstract Forestry has contributed many problems to the Operations Rescarch (OR) community. At the same time, OR hais developed many modelx and solution methods foc uen forestry. In this article. wo describe the current status of research on the application of OR methods to forestry and a number of research challenges or open questions that we believe will be of interest to both researchers and practitioners. The areas covened include strategic chical and operational planning, fire management, conservation and the use of OR to address environmental concems. The paper also considers more general methodological areas tha are important to forestry including uncenainty, multiple objectives and hierarchical plamning.

Keywords Forestry - OR challenges - Transporlation - Harvesting Environment - Fores management - Fire management . Operations research . Strategic. Tactical . Operational

1 Introduction

The forest industry is very imporiant from both regional and national perspectives in many countrics. It constitutes a large proportion of the net exports in. for example. Canada. Chile.

Q Mikarl Rōnnavix
Mikacl Rönryvix
mikael_omavisternac.elaval.c2
EORAC, Ueviversté Laval, Quútec, Canada
${ }^{2}$ The Fonatry Rescarch lestitutit of S nocden. Uppralala, Swodan
Departract of Indetrial Enginccring. University of Chile: Santiago, Chilc

- Center for Mateenatical Modeling and DIM, Uninersity of Chile. Santiage. Clive

3 Deparment of Indarrial Engikerring, Dallhousie Univessity, Halifux, NS, Canda
6 Northem Reseanch Steriose, USDA Freset Service, St. Paul, MN, USA
Univerity of Torocts, Toroaso, Cranda
8 College of Computing and Informatiss, Dreael University, Philudelphiz, PS, USA

- Tactaical University of Madrid, Madrid, Spuin

Open Problem 13 How can we include complex environmental considerations like fragmentation, corridors, balancing mature patches, etc. into URM and ARM formulations in a computationally feasible way?

It is well recognized now that adjacency constraints capture only a part of necessary environmental considerations. While maximum opening size limits are important, excessive fragmentation of forests is not particularly satisfactory. In order to allow wildlife to move between habitats, corridors of mature trees need to exist to join them. Similarly, issues of forest edge as well as a balance of mature forest are important for certain species. A few examples exist of attempting to address related issues using heuristic approaches. Thus, exact approaches are needed.

Modelling issues

Modelling issues

- Clearcut \longleftrightarrow Connected component of the graph where the nodes are the harvested stands

Modelling issues

- Mature patch \longleftrightarrow Connected component of the graph where the nodes are mature stands

Modelling issues

- Core area \longleftrightarrow Connected component of the graph where the nodes are mature stands surrounded by a buffer of non-harvested stands

Connectivity

Source: Os Espacialistas

Models in MIP (A)

- $x_{i}^{t}= \begin{cases}1 & \text { if stand } i \text { is selected to be harvested in period } t \\ 0 & \text { otherwise }\end{cases}$
- $y^{t}\left\{\begin{array}{l}1 \text { if stand } i \text { is selected to be part of the core area of }\end{array}\right.$ a habitat in period t
0 otherwise

Models in MIP (A)

- $x_{i}^{t}= \begin{cases}1 & \text { if stand } i \text { is selected to be harvested in period } t \\ 0 & \text { otherwise }\end{cases}$
- $y_{i}^{t}= \begin{cases}1 & \text { if stand } i \text { is selected to be part of the core area of } \\ 0 & \text { a habitat in period } t\end{cases}$
- $\sum_{i \in C} x_{i}^{t} \leq|C|-1 ; t \in T ; C \in \mathcal{C} c^{t}$
- $\sum_{i \in \Pi^{t}(M)} y_{i}^{t} \geq y_{j}^{t} ; t \in T ; M \in \mathcal{M} h^{t} ; j \in M$
- $\sum_{\substack{t^{\prime} \leq t: \\ c^{t^{\prime}} \cap\{i\} \neq \emptyset}} x_{i}^{t^{\prime}} \leq 1-y_{j}^{t} ; t \in T ; j \in M^{t} ; i \in \pi(j) \cup\{j\}$
- $\sum_{i \in M^{t}} a_{i} y_{i}^{t} \geq C O T_{\text {min }} ; t \in T$

Clearcuts

$$
a_{i}=1 \mathrm{ha}, A_{\max }=2 \mathrm{ha}
$$

1	2	3
4	5	6
7	8	9

Mature forest
in period 1

Clearcuts

Connected region, unfeasible as clearcut, minimal

1	2	3
4	5	6
7	8	9

Clearcuts

1	2	3
4	5	6
7	8	9

Clearcuts

1	2	3
4	5	6
7	8	9

Clearcuts

1	2	3
4	5	6
7	8	9

Clearcuts

1	2	3
4	5	6
7	8	9

$$
x_{1}^{1}+x_{2}^{1}+x_{3}^{1} \leq 2
$$

Clearcuts

1	2	3
4	5	6
7	8	9

$$
\begin{aligned}
& x_{1}^{1}+x_{2}^{1}+x_{3}^{1} \leq 2 \\
& \sum_{i \in C} x_{i}^{t} \leq|C|-1 ; \quad t \in T ; C \in \mathcal{C} C^{t}
\end{aligned}
$$

Core area

$$
a_{i}=1 \text { ha }, C_{\min }=3 \text { ha }
$$

1	2	3
4	5	6
7	8	9

Mature forest in period 1

Core area

Connected region, unfeasible core area

1	2	3
4	5	6
7	8	9

Core area

Connected region, unfeasible core area

1	2	3
4	5	6
7	8	9

Core area

Connected region, unfeasible core area

1	2	3
4	5	6
7	8	9

Core area

Connected region, unfeasible core area

1	2	3
4	5	6
7	8	9

$$
y_{4}^{1}+y_{8}^{1} \geq y_{7}^{1}
$$

Core area

Connected region, unfeasible core area

1	2	3
4	5	6
7	8	9

Core area

1	2	3
4	5	6
7	8	9

Core area

1	2	3
4	5	6
7	8	9

Core area

1	2	3
4	5	6
7	8	9

Core area

1	2	3
4	5	6
7	8	9

$$
\begin{aligned}
& y_{4}^{1}+y_{5}^{1}+y_{9}^{1} \geq y_{7}^{1} \\
& y_{4}^{1}+y_{5}^{1}+y_{9}^{1} \geq y_{8}^{1}
\end{aligned}
$$

Core area

1	2	3
4	5	6
7	8	9

$y_{4}^{1}+y_{5}^{1}+y_{9}^{1} \geq y_{7}^{1}$
$y_{4}^{1}+y_{5}^{1}+y_{9}^{1} \geq y_{8}^{1}$
$\sum_{i \in \Pi^{t}(M)} y_{i}^{t} \geq y_{j}^{t} ; t \in T ; M \in \mathcal{M} h^{t} ; j \in M$

Habitat

Habitat

1	2	3
4	5	6
7	8	9

$$
\sum_{\substack{t^{\prime} \leq t: \\ c^{t^{\prime} \cap\{i\} \neq \emptyset}}} x_{i}^{t^{\prime}} \leq 1-y_{j}^{t} ; t \in T ; j \in M^{t} ; i \in \pi(j) \cup\{j\}
$$

- Polynomial number of variables
- Exponential number of constraints
- Polynomial number of variables
- Exponential number of constraints

Branch-and-cut \longrightarrow

Solutions within 1% of the optimum in less than three hours

Models in MIP (B)

- $z_{c}^{t}= \begin{cases}1 & \text { if region } c \in \mathcal{C}^{t} \\ 0 & \text { otherwise harvested in period } t\end{cases}$
- $y_{h}^{t}= \begin{cases}1 & \text { if region } h \in \mathcal{H}^{t} \text { is habitat in period } t \\ 0 & \text { otherwise }\end{cases}$
- $w_{\text {ir }}^{t}= \begin{cases}1 & \text { if subregion } r \in \mathcal{R}_{i} \text { is core habitat in period } t \\ 0 & \text { otherwise }\end{cases}$

Clearcuts

Region $c \in \mathcal{C}^{1}$ that can be a clearcut in period 1 if ...

1	2	3
4	5	6
7	8	9

Habitats

Region $h \in \mathcal{H}^{1}$ that can be a habitat in period 1 if ...

1	2	3
4	5	6
7	8	9

Core area - Subregions

Core area

Core area

Core area

Core area

Constraints

- $\sum_{u=1}^{t} \sum_{c \in \mathcal{C}^{u}: i \in c} z_{c}^{u}+\sum_{h \in \mathcal{H}^{t}: i \in h} y_{h}^{t} \leq 1, \forall t \in \mathcal{T}, i \in \mathcal{V}^{t}$
- $w_{i r}^{t}+\sum_{\substack{c \in \mathcal{C}^{t}: \\ j \in c}} z_{c}^{t} \leq 1, \forall t \in \mathcal{T}, i \in \mathcal{V}^{t}, r \in \mathcal{R}_{i}, j \in \mathcal{I}_{r} \backslash\{i\}$
- $w_{i r}^{t} \leq \sum_{h \in \mathcal{H}^{t}: i \in h} y_{h}^{t}, \forall t \in \mathcal{T}, i \in \mathcal{V}^{t}, r \in \mathcal{R}_{i}$
- $\sum_{i \in h} \sum_{r \in \mathcal{R}_{i}} \mathrm{~s}_{i r} w_{i r}^{t} \geq \mathrm{C}^{\min } y_{h}^{t}, \forall t \in \mathcal{T}, h \in \mathcal{H}^{t}$
- $\sum_{i \in \mathcal{V}^{t}} \sum_{r \in \mathcal{R}_{i}} \mathrm{~s}_{i r} w_{i r}^{t} \geq \mathrm{C}^{\text {mintot }}, \forall t \in \mathcal{T}$
- $\sum_{h \in \mathcal{H}^{t}} \mathrm{~s}_{h} y_{h}^{t} \geq \mathrm{H}^{\text {mintot }}, \forall t \in \mathcal{T}$
- Polynomial number of constraints
- Exponential number of variables $\stackrel{\circ}{\square}$

Branch-and-bound \longrightarrow

Solutions within 1% of the optimum in less than two hours
except
for the large instances, with solution gaps slightly above 7\% -

Table: Approaches studied.

Exact methods	Heuristics
Solve MILP models	Simulation
Branch-and-cut algorithm	Simulated annealing
Branch-and-bound algorithm	Tabu search
Multi-objective programming	Hybrid heuristics
	Linear programming based heuristics
	Dynamic programming-based heuristics

Obrigada!

Source: Os Espacialistas

