# Optimal thinking in forest management with environmental concerns

# **Isabel Martins**





### 1 Open problem

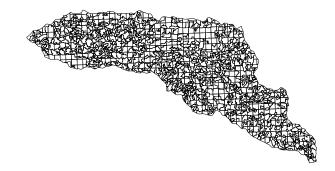
2 Methodologies

**Isabel Martins** 

# **Basic forestry problem**



Source: Os Espacialistas

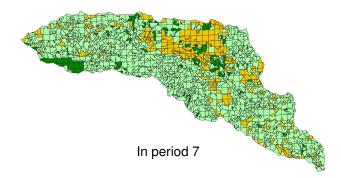


Forest area = 21147.8 ha # stands = 1363 # periods = 7

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon

• ...





Limiting clearcut size aims at reducing the impact on

- soil
- water quality
- wildlife
- scenic beauty

• ...

## **Mature patches**



Forest patch = Edge + Core area

**Core area** - interior area of the patch where ecological functioning is not impacted by the effect of immediately surrounding conditions

**Edge** - buffer area separating core area from outside influences

# Edge and core-dependent species



Edge-dependent species



#### Core-dependent species

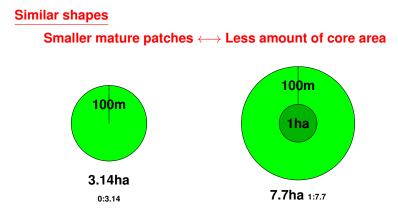
## **Core area**

The core area of a forest patch is determined by the **area**, **shape and immediately surrounding conditions of the patch** 

## **Core area**

The core area of a forest patch is determined by the **area**, **shape and immediately surrounding conditions of the patch** 

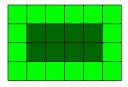
### Area

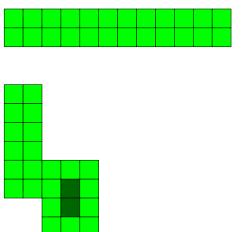


### Shape

#### Similar areas

### Elongated or complex shapes $\longleftrightarrow$ Less amount of core area





## **Basic + clearcut constraints**

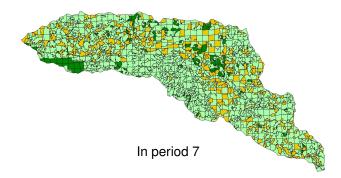


Source: Os Espacialistas

## **Basic + clearcut constraints**

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon
- For each period, the area of every clearcut does not exceed the maximum allowed size



## **Basic + clearcut + habitat constraints**

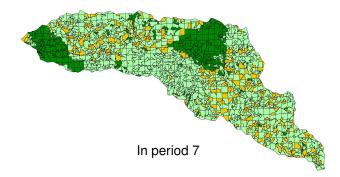


Source: Os Espacialistas

## **Basic + clearcut + habitat constraints**

Maximize the profit from timber harvested over the planning horizon subject to:

- A regular production of timber in the planning horizon
- A minimum in the average age of the forest at the end of the planning horizon
- For each period, the area of every clearcut does not exceed the maximum allowed size
- Each habitat is a mature patch meeting a minimum core area
- In each period, the total core area inside habitats is greater than or equal to a minimum total core area



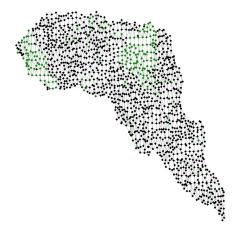


**Open Problem 13** How can we include complex environmental considerations like fragmentation, corridors, balancing mature patches, etc. into URM and ARM formulations in a computationally feasible way?

It is well recognized now that adjacency constraints capture only a part of necessary environmental considerations. While maximum opening size limits are important, excessive fragmentation of forests is not particularly satisfactory. In order to allow wildlife to move between habitats, corridors of mature trees need to exist to join them. Similarly, issues of forest edge as well as a balance of mature forest are important for certain species. A few examples exist of attempting to address related issues using heuristic approaches. Thus, exact approaches are needed.







# Connectivity



Source: Os Espacialistas

# Models in MIP (A)

•  $x_i^t = \begin{cases} 1 & \text{if stand } i \text{ is selected to be harvested in period } t \\ 0 & \text{otherwise} \end{cases}$ 

- $y_i^t = \begin{cases} 1 & \text{if stand } i \text{ is selected to be part of the core area of} \\ a habitat in period t \\ 0 & \text{otherwise} \end{cases}$

# Models in MIP (A)

•  $x_i^t = \begin{cases} 1 & \text{if stand } i \text{ is selected to be harvested in period } t \\ 0 & \text{otherwise} \end{cases}$ 

- $y_i^t = \begin{cases} 1 & \text{if stand } i \text{ is selected to be part of the core area of} \\ a habitat in period t \\ 0 & \text{otherwise} \end{cases}$
- $\sum_{i \in C} x_i^t \leq |C| 1; t \in T; C \in Cc^t$
- $\sum_{i\in\Pi^{t}(M)} y_{i}^{t} \geq y_{j}^{t}; t \in T; M \in \mathcal{M}h^{t}; j \in M$

• 
$$\sum_{\substack{t' \leq t: \\ \mathcal{C}^{t'} \cap \{i\} \neq \emptyset}} x_i^{t'} \leq 1 - y_j^t; t \in T; j \in M^t; i \in \pi(j) \cup \{j\}$$

• 
$$\sum_{i \in M^t} a_i y_i^t \ge COT_{\min}; t \in T$$

$$a_i = 1$$
 ha,  $A_{max} = 2$  ha

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Mature forest in period 1



#### Connected region, unfeasible as clearcut, minimal

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

 $x_1^1 + x_2^1 + x_3^1 \leq 2$ 

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

$$x_1^1 + x_2^1 + x_3^1 \le 2$$
  
 $\sum_{i \in C} x_i^t \le |C| - 1; \ t \in T; C \in Cc^t$ 

### **Core area**

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Mature forest in period 1



### Connected region, unfeasible core area

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |



| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |



| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |



| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

 $y_4^1 + y_8^1 \ge y_7^1$ 

**Isabel Martins** 

9th September 2020 33 / 51



| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

$$\begin{array}{l} y_4^1 + y_5^1 + y_9^1 \geq y_7^1 \\ y_4^1 + y_5^1 + y_9^1 \geq y_8^1 \end{array}$$

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

$$y_4^1 + y_5^1 + y_9^1 \ge y_7^1$$
  
 $y_4^1 + y_5^1 + y_9^1 \ge y_8^1$ 

$$\sum_{i\in\Pi^t(M)} y_i^t \ge y_j^t; t \in T; M \in \mathcal{M}h^t; j \in M$$

# **Habitat**

### Habitat

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

$$\sum_{\substack{t' \leq t: \\ \mathcal{C}^{t'} \cap \{i\} \neq \emptyset}} x_i^{t'} \leq 1 - y_j^t; t \in T; j \in M^t; i \in \pi(j) \cup \{j\}$$

**Isabel Martins** 

• Polynomial number of variables



• Exponential number of constraints

• Polynomial number of variables

Exponential number of constraints

 $\text{Branch-and-cut} \longrightarrow$ 

Solutions within 1% of the optimum in less than three hours







# Models in MIP (B)

•  $z_c^t = \begin{cases} 1 & \text{if region } c \in C^t \text{ is harvested in period } t \\ 0 & \text{otherwise} \end{cases}$ 

• 
$$y_h^t = \begin{cases} 1 & \text{if region } h \in \mathcal{H}^t \text{ is habitat in period } t \\ 0 & \text{otherwise} \end{cases}$$

• 
$$w_{ir}^t = \begin{cases} 1 & \text{if subregion } r \in \mathcal{R}_i \text{ is core habitat in period } t \\ 0 & \text{otherwise} \end{cases}$$



### **Region** $c \in C^1$ that can be a clearcut in period 1 if ...

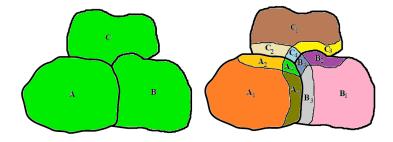
| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

# **Habitats**

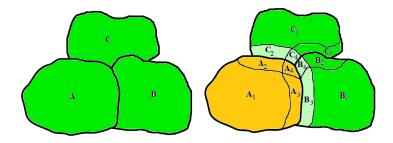
### Region $h \in \mathcal{H}^1$ that can be a habitat in period 1 if ...

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

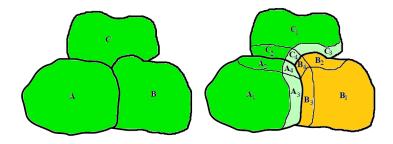
# **Core area - Subregions**



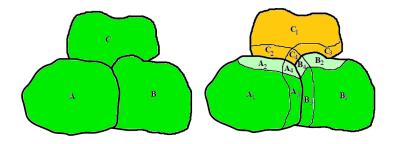




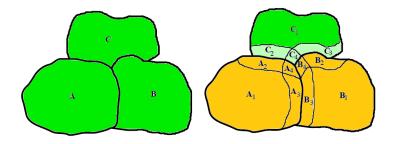












# **Constraints**

• 
$$\sum_{u=1}^{t} \sum_{c \in \mathcal{C}^{U}: i \in c} z_{c}^{u} + \sum_{h \in \mathcal{H}^{l}: i \in h} y_{h}^{l} \le 1, \forall t \in \mathcal{T}, i \in \mathcal{V}^{l}$$

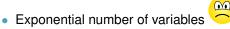
• 
$$w_{ir}^t + \sum_{\substack{c \in \mathcal{C}^t: \\ j \in c}} z_c^t \le 1, \forall t \in \mathcal{T}, i \in \mathcal{V}^t, r \in \mathcal{R}_i, j \in \mathcal{I}_r \setminus \{i\}$$

• 
$$w_{ir}^{t} \leq \sum_{h \in \mathcal{H}^{t}: i \in h} y_{h}^{t}, \forall t \in \mathcal{T}, i \in \mathcal{V}^{t}, r \in \mathcal{R}_{i}$$

- $\sum_{i \in h} \sum_{r \in \mathcal{R}_{i}} \mathbf{s}_{ir} \mathbf{w}_{ir}^{t} \ge \mathbf{C}^{\min} \mathbf{y}_{h}^{t}, \forall t \in \mathcal{T}, h \in \mathcal{H}^{t}$
- $\sum_{i \in \mathcal{V}^{t}} \sum_{r \in \mathcal{R}_{i}} s_{ir} w_{ir}^{t} \ge C^{\text{mintot}}, \forall t \in \mathcal{T}$
- $\sum_{h \in \mathcal{H}^{t}} \mathbf{s}_{h} \mathbf{y}_{h}^{t} \geq \mathbf{H}^{\text{mintot}}, \ \forall t \in \mathcal{T}$

Polynomial number of constraints





### $Branch-and-bound \longrightarrow$

Solutions within 1% of the optimum in less than two hours



except

for the large instances, with solution gaps slightly above 7%



#### Table: Approaches studied.

| Exact methods               | Heuristics                           |
|-----------------------------|--------------------------------------|
| Solve MILP models           | Simulation                           |
| Branch-and-cut algorithm    | Simulated annealing                  |
| Branch-and-bound algorithm  | Tabu search                          |
| Multi-objective programming | Hybrid heuristics                    |
|                             | Linear programming based heuristics  |
|                             | Dynamic programming-based heuristics |

# **Obrigada!**



Source: Os Espacialistas