

## Towards Smart Grids and Industry 4.0: Optimal Scheduling of a Steel Plant

Pedro M. Castro (pmcastro@fc.ul.pt) http://www.researcherid.com/rid/C-3642-2008

Associate Researcher with Habilitation





Ciências

UNIVERSIDADE De lisboa

# Smart grid

**September 10, 2020** 

Power grid needs to remain balanced Production=Consumption (limited storage)

Pedro Castro - Towards Smart Grids and Industry 4.0



sid

curve at the consumers

 A real-time dynamic network of electrical demand, supply and control



#### **September 10, 2020**

How to cope with

On-site generation

200 known around 12:00 the day before 150 100

4:00

8:00

5 6

 Actively participate in energy markets 145 This work focuses on the day ahead 95

45

50 0

70

50



Electricity cost profile 2 (€/MWh)

7 8 9 1011121314151617181920212223

16:00

12:00









Prefer green and avoid red periods

Critical for energy intensive industries

uncertain electricity prices?

- Time of use (TOU) contracts

spot market >epexspot

- Hourly changing prices,

- Diversify electricity purchase options

- Power curve with on- and off-peak prices

- Harsh penalties for under/overconsumption

-Air separation, cement, pulp & paper, steel

0:00

20:00

Fourth industrial revolution (Industry 4.0)



- Advanced manufacturing and smart industries
  - Computer-based decision-making tools that enhance system performance
  - Models that mimic the behavior of a physical system
  - Quickly exchange data and information with the different systems of the enterprise



**September 10, 2020** 



# Digitalization in the chemical industry



Digitalisation Transforms the Chemical Industry Rapidly Across its Entire Value Chain

Vivi Filippousi. SusChem Stakeholders Event 2019. November 27, 2019.



**September 10, 2020** 



Pedro Castro - Towards Smart Grids and Industry 4.0

# Mathematical optimization is key

- Mixed-Integer Linear Programming
- Resource-Task Network process representation
  - Modelling of complex production recipes/environments
    - Resources (equipment units, material states, utilities, etc.)
    - Tasks (processing, maintenance, storage, etc.)
    - Structural parameters bring process data into mathematical model

#### Discrete-time representation

- Easy modelling of hourly-changing electricity prices
  - Time slots of size  $\delta$  (min)

Process Info



$$R_{r,t} = R_r^0|_{t=1} + R_{r,t-1} + \Pi_{r,t} + \sum_i \sum_{\theta=0}^{\tau_i} \mu_{r,i,\theta} N_{i,t-\theta} \,\forall r,t$$







#### Case study from the steel supply chain



September 10, 2020



C





Typical power consumption of household appliances



**September 10, 2020** 

CMAFelO

Pedro Castro - Towards Smart Grids and Industry 4.0

#### **RTN** representation of processing tasks



Casting sequence (last stage) must not be interrupted!



**September 10, 2020** 

CMAF<sub>6</sub>IO



#### **September 10, 2020**

#### Pedro Castro - Towards Smart Grids and Industry 4.0

# EAFs have multiple operating modes



- Flexibility to select power mode for a heat
- Decision not easy due to tradeoff between:
  - Production speed ( more tasks in a low-cost period)
  - Energy efficiency
  - Electrode replacement frequency
    - Energy and maintenance costs are comparable

| Operating mode <i>m</i>                                                                                                                             | <b>M</b> 1          | M <sub>2</sub> | M <sub>3</sub> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|----------------|
| Power consumption $pw_{k=1,m}$ (MW)                                                                                                                 | 40                  | 60             | 75             |
| Duration for steel heats H <sub>1</sub> -H <sub>8</sub> , H <sub>13</sub> -H <sub>17</sub> , H <sub>21</sub> -H <sub>24</sub> (min)                 | 69                  | 49             | 41             |
| Duration for steel heats $H_9$ - $H_{12}$ , $H_{18}$ - $H_{20}$ (min)                                                                               | 76                  | 54             | 45             |
| Electrode mass consumption $ma_{h,m}$ for H <sub>1</sub> -H <sub>8</sub> , H <sub>13</sub> -H <sub>17</sub> , H <sub>21</sub> -H <sub>24</sub> (kg) | 123.3               | 131.4          | 137.4          |
| Electrode mass consumption $ma_{h,m}$ for H <sub>9</sub> -H <sub>12</sub> , H <sub>18</sub> -H <sub>20</sub> (kg)                                   | 135.7               | 144.5          | 151.2          |
|                                                                                                                                                     | <u> </u>            | Production s   | peed           |
|                                                                                                                                                     | ↑ Energy efficiency |                |                |
|                                                                                                                                                     | ↓ Replacement cost  |                |                |



### **Problem overview**



**Electricity price profile** Electrode Energy efficiency mass left 6:00 7:00 8:00 9:00 How to melt Heat Heat Heat scrap steel in 1 2 3 **Electric Arc Furnaces?** Heat Steel Heat Heat 1 2 3 Steel Total cost = Electricity purchases Heat 3 Heat 2 Heat 1 + Electrode replacement cost



# Alternative objective functions

- Include energy cost
- Option 1: discrete electrode replacement cost
  - Accounts for purchase of new electrodes



Electricity price in hour *hr* (parameter) Electricity purchased in slot *t* (continuous variable) Electricity purchased in slot *t* (binary variable)

- Option 2: continuous electrode replacement cost
  - Also accounts for fraction consumed (+) or produced (-) with respect to initial condition

• min ... + 
$$c^{RE}$$
  $\sum_{r \in R^{EM}} R_r^0 - R_{r,|T}$  Electrode mass at the start of scheduling horizon (parameter)

**September 10, 2020** 

## RTN model constraints

• Excess resource balances

$$- R_{r,t} = R_r^0|_{t=1} + \left| R_{r,t-1} \right|_{r \notin R^{PW}} + \left| \Pi_{r,t} \right|_{r \in R^{PW}} + \sum_i \sum_{\theta=0:t-\theta \in T_i}^{\tau_i} \overline{\mu_{r,i,\theta} N_{i,t-\theta}} \,\forall r,t$$

Electrical power resource not allowed to accumulate

Resource consumption/production by processing, transfer and maintenance tasks

Replacement tasks executed only when mass becomes negative

- 
$$R_{r,t} + \sum_{i \in I_r^{RE}} \mu_{r,i,\tau_i} N_{i,t} \le mass \ \forall r \in R^{EM}, t$$

- Electrode mass cannot be greater than when in a condition new
- Steel heat *h* is processed/transferred once in/from every stage

- 
$$\sum_{i \in I_{h,k}} \sum_{t \in T_i} N_{i,t} = 1 \ \forall h, k = 1, ..., 3$$

-  $\sum_{i \in I_g} \sum_{t \in T_i} N_{i,t} = 1 \forall g, k = 4$  (member of group g in stage 4)

$$- \sum_{i \in I_{h,k}^T} \sum_{t \in T_i} N_{i,t} = 1 \,\forall h, k \le 3$$

• Maximum transfer time between stages

$$- \sum_{r \in R_{h,k}^{IL}} \sum_{t} R_{r,t} \leq \left\lfloor (trf_k^U - trf_k^L)/\delta \right\rfloor \forall h, 1 < k \leq 4$$



**Optimality gap** 

### Results for discrete electrode cost

LP relaxation (€)

#### Direct solution of MILP

- -Poor performance (up to 3600 CPUs)
  - Large optimality gap

 $\delta$  (min)

**September 10, 2020** 

• No solution for  $\delta$ = 5 min

EAF modes

|   | 15                                                                                                               | $(M_1, M_2, M_3)$ | 87,001      | 75,377 | 13.3% |
|---|------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--------|-------|
|   | 10                                                                                                               | $(M_1, M_2, M_3)$ | 86,827      | 73,718 | 15.1% |
|   | 5                                                                                                                | $(M_1, M_2, M_3)$ | no solution | 73,671 | -     |
| - | and the second |                   |             |        |       |

MILP (€)

#### Two-stage heuristic procedure

- -Better performance
  - Optimality gap reduced by one order of magnitude
  - 1.4% lower cost for  $\delta$ = 10 min

| $\delta$ (min) | EAF modes         | MILP (€)    | LP relaxation (€) | Optimality gap |
|----------------|-------------------|-------------|-------------------|----------------|
| 15             | $(M_1, M_2, M_3)$ | 87,086      | 86,297            | 0.83%          |
| 10             | $(M_1, M_2, M_3)$ | 85,593      | 85,210            | 0.42%          |
| 5              | $(M_1, M_2, M_3)$ | no solution | 85,153            | -              |





### Optimal schedule for $\delta$ =10 min (€85,593)



 Optimization takes full advantage of flexible operating modes

-(12,9,3) heats in  $(M_1,M_2,M_3)$ 

- EAFs do not operate in high-cost periods and follow different strategies
  - EAF2 goes for shorter tasks
    - 1 electrode replacement
  - EAF1 prefers low power mode (10 batches)
    - Depleted electrode at the end

September 10, 2020



ľC

#### Continuous replacement cost (€118,143)





| δ <b>(min)</b> | <pre># heats in (M<sub>1</sub>,M<sub>2</sub>,M<sub>3</sub>)</pre> | MILP (€) | Optimality<br>gap |
|----------------|-------------------------------------------------------------------|----------|-------------------|
| 15             | (21,3, <mark>0</mark> )                                           | 119,886  | 0.23%             |
| 10             | (22,2, <mark>0</mark> )                                           | 118,143  | 0.18%             |
| 5              | (21,3, <mark>0</mark> )                                           | 118,260  | 0.33%             |

- Similar strategies for EAFs
  - -1 replacement task
  - -Ready for next horizon
- High-power mode completely avoided
  - Larger contribution of electrode mass in objective
  - Longer tasks ⇒ more heats in medium cost periods

September 10, 2020



# Flexible operation vs. single mode



• Low-power mode is the best

#### - Negligible cost increase

| Mode           | Cost (€) | Increase |
|----------------|----------|----------|
| <b>M</b> 1     | 118,146  | 0.00%    |
| M <sub>2</sub> | 122,089  | 3.34%    |
| M <sub>3</sub> | 126,675  | 7.22%    |

- What if we double the average electricity price?
  - -(13,6,5) heats in  $(M_1,M_2,M_3)$
  - M<sub>2</sub> preferred for single mode operation

| Mode           | Cost (€) | Increase |
|----------------|----------|----------|
| M <sub>1</sub> | 180,646  | 3.76%    |
| M <sub>2</sub> | 174,417  | 0.18%    |
| M <sub>3</sub> | 186,436  | 7.08%    |

September 10, 2020



С

# Influence of initial electrode mass



- Electrodes not need to be new at the start
  - -Rolling horizon scheme
    - $R_r^0$  = 400 kg for EAF1
    - $R_r^0$  = 600 kg for EAF2 Partly consumed at 0:00
- Replacement tasks now in green region
- Schedule very similar to before

**September 10, 2020** 



12:00

10:00

(C

# Conclusions



- New scheduling formulation for Italian steel plant purchasing electricity from day-ahead market
  - Flexible operating modes for EAFs together with the maintenance of their electrode systems
- Optimal results for a typical price profile show majority of tasks processed in low-power mode
  - Most energy efficient, consumes the least electrode mass
  - Benefits can reach 7.2% compared to operating in single mode
- Model almost ready for everyday decision-making!
- Further details: <a href="https://doi.org/10.1021/acs.iecr.0c01714">https://doi.org/10.1021/acs.iecr.0c01714</a>
- Acknowledgments: **ABB** Carnegie Mellon tu technische universität dortmund
  - FCT <sup>Fundação</sup> para a Ciência e a Tecnologia projects CEECIND/00730/2017, UID/MAT/04561/2019
  - Marie Curie Horizon 2020 EID-ITM project PRONTO, Grant #675215

