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The Laplacian
Some prototypical partial differential equations (PDEs):

∂u
∂t = k ∂

2u
∂x2 (heat equation), k > 0

∂2u
∂t2 = c2∂

2u
∂x2 (wave equation), c > 0

(plus boundary and initial conditions) in an interval I × [0,∞)
where

∆u =
d∑

i=1

∂2u
∂x2

i

is the Laplacian (trace of the Hessian) in the x = (x1, . . . , xd)
(space) variables. Typical Ansatz: separation of variables /
abstract Fourier series: solve the elliptic PDE

−∆u = λu in Ω

plus boundary conditions, then superpositions give the general
solutions of the heat and wave equations.
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The Laplacian
Solve/understand the Helmholtz equation

−∆u = λu in Ω ⊂ Rd

subject to boundary conditions
u = 0 on ∂Ω: Dirichlet (first kind),
fixed membrane/temperature
∂u
∂ν = 0 on ∂Ω: Neumann (second kind),
free membrane/perfect insulation (no flux)
θ ∂u
∂ν + (1 − θ)u = 0 on ∂Ω: Robin (third kind), elastically

supported membrane/imperfect insulation (θ ∈ (0, 1))
Rewrite (and generalise) the Robin boundary condition:

∂u
∂ν

+ αu = 0 on ∂Ω,

where α ∈ R, or C, or α : ∂Ω → R or C is a function.
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The Laplacian with Robin boundary conditions

−∆u = λu in Ω ⊂ Rd

∂u
∂ν

+ αu = 0 on ∂Ω

α = 0: Neumann; “α = +∞” (and “α = −∞”?): Dirichlet
Problem can’t generally be solved explicitly (even Dirichlet
and Neumann only for a few special domains)
Today: keep things simple(r), α ∈ R (mostly)

Goals
Understand how the solutions (eigenvalues λ and eigenfunctions u)
depend on:

The parameter α;
The domain Ω and its “geometry”.
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Special case: 1D, dependence on α ∈ R

−u′′ = λu in (0, 1)
−u′(0) + αu(0) = 0

u′(1) + αu(1) = 0

Eigenfunctions are linear combinations of sin(
√
λx) and cos(

√
λx),

use boundary conditions to obtain:

λ eigenvalue ⇐⇒ α2 + α
√
λ cot(

√
λ)− λ = 0.

Note: for each problem, i.e. each fixed α, there will be a sequence
of eigenvalues

λ1 ≤ λ2 ≤ λ3 ≤ . . . → +∞

(use the spectral theorem).
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Plot α2 + α
√
λ cot(

√
λ)− λ = 0

Observations:
λ varies smoothly
with α

The eigenvalues are
monotonically
increasing in α

α = 0: Neumann,
α → +∞:
convergence to
Dirichlet from below
α → −∞:
convergence to
Dirichlet from above
BUT ∃ divergent
eigenvalues
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The case of general Ω ⊂ Rd

−∆u = λu in Ω ⊂ Rd

∂u
∂ν

+ αu = 0 on ∂Ω,

α ∈ R. Self-adjoint operator on L2(Ω) with compact resolvent,
eigenvalues λ1 ≤ λ2 ≤ . . . → +∞.
Theorem (folklore)
Let Ω ⊂ Rd be a bounded domain with sufficiently smooth
boundary and α ∈ R. Then

Each eigenvalue λn is a piecewise analytic function of α (there
may be crossings of curves);
Each eigenvalue λn is a monot. increasing function of α;
As α → +∞, λn converges to the n-th eigenvalue of the
Dirichlet Laplacian from below;
As α → −∞ ∃ sequence of eigenvalues diverging to −∞.
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Some of the eigencurves for the unit disk
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The case of general Ω ⊂ Rd

Ingredients of the proof
Smoothness: analytic perturbation theory of Kato.
The weak form of the eigenvalue equation: (λ, u) eigenpair iff∫

Ω
∇u · ∇v + α

∫
∂Ω

uv = λ

∫
Ω

uv

for all test functions v ∈ H1(Ω).
Min-max characterisation of the eigenvalues, e.g.

λ1 = inf
06=u∈H1(Ω)

∫
Ω |∇u|2 + α

∫
∂Ω u2∫

Ω u2

= inf
06=u∈H1(Ω)

〈u,−∆u〉L2(Ω)

‖u‖2
L2(Ω)

.
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The asymptotic behaviour as α → −∞

λ1 = inf
06=u∈H1(Ω)

∫
Ω |∇u|2 + α

∫
∂Ω u2∫

Ω u2

Necessarily λ1 < 0 if α < 0, and in 1D we expect exponentials in
place of trig functions (−u′′ = λu, λ < 0).

General principle
The divergent eigenvalues behave like λ ∼ −α2 as α → −∞.
Intuitively: u(x) = eαx eigenfunction of

−u′′(x) = −α2u(x) in (0,∞)

−u′(0) + αu(0) = 0.

On general domains there exists a sequence of eigenfunctions
concentrating exponentially (like eαx) near the boundary.
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The asymptotic behaviour as α → −∞

Theorem (Test function argument, Giorgi–Smits 2007)
If Ω ⊂ Rd is a Lipschitz domain, then λ1 ≤ −α2 for all α < 0.

Theorem (Lacey–Ockendon–Sabina 1998, Lou–Zhu 2004,
Levitin–Parnovski 2008)

If Ω ⊂ Rd is C1, then λ1 = −α2 + o(α2) as α → −∞.
If Ω ⊂ R2 is piecewise smooth with “model corners”, then
λ1 = −Cα2 + o(α2) for some C ≥ 1 which is larger for
“pointier” corners.

Theorem (Daners–K. 2010)
If Ω ⊂ Rd is C1, then for each n ∈ N,

λn = −α2 + o(α2) as α → −∞.
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Since ca. 2013: More terms in the asymptotic expansion for Ω
smooth and for Ω with “corners”. For smooth Ω:

2014 Exner–Minakov–Parnovski (3 − ε)-term asymp-
totic expansion, 2D

2015 Freitas–Krejčiřík 3-term asymp exp
for some domains

2015/6 Pankrashkin–Popoff 3-term, general dim
2017 Kovařík–Pankrashkin p-Laplacian, λ1
2017 Helffer–Kachmar n-term, general dim
2019 Bögli–K.–Lang 1-term, α ∈ C

For Ω with model corners or conical:
Helffer–Pankrashkin (2015), Bruneau–Popoff (2016), Pankrashkin
(2016), Khalile–Pankrashkin (2018), Khalile (2018),
Khalile–Ourmières-Bonafos (2018), Kovařík–Pankrashkin (2019), …
Also: links to Schrödinger operators with potentials supported on a
lower dimensional manifold (δ-potentials), works of Exner and co.;
links to magnetic Laplacians, WKB approximations, …
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The dependence of the eigenvalues on Ω

Dirichlet problem

−∆u = λu in Ω ⊂ Rd ,

u = 0 on ∂Ω,

write 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . . for the eigenvalues.

Theorem (Faber–Krahn, 1920s/conjecture of Lord Rayleigh)
Ω ⊂ Rd bounded domain, B ball of the same volume. Then

λ1(Ω) ≥ λ1(B)

with equality iff Ω is a ball (up to a negligible set).

Analytic version of the isoperimetric inequality: |∂Ω| ≥ |∂B|.
Physically: circular drums have the lowest fundamental
frequencies; “generically speaking”, rate of diffusion in a body
is slowest if the body is spherical.
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The dependence of the Robin eigenvalues on Ω

Now write λ1(Ω, α) ≤ λ2(Ω, α) ≤ . . . for the eigenvalues of the
Robin Laplacian on Ω.

Theorem (Bossel–Daners)
Ω ⊂ Rd bounded, sufficiently smooth domain, B ball of the same
volume, α > 0 fixed.

λ1(Ω) ≥ λ1(B)

with equality iff Ω is a ball (up to a negligible set).

Sketch of proof in 2D Bossel (1986), general case Daners
(2006), characterisation of equality Daners–K. (2007), less
regularity Bucur–Daners (2010), Bucur–Giacomini (2010,
2015)
Higher eigenvalues, including numerics and/or negative α:
various authors since 2008
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Divergence from the Weyl asymptotics

Theorem
Ω ⊂ R2 bounded domain of area |Ω|, with |∂Ω| sufficiently
smooth, α ∈ (−∞,+∞]. Then

λn =
4πn
|Ω|

+O(n1/2) as n → ∞.

Pólya’s conjecture
In the Dirichlet case, for all n ∈ N,

λn(Ω) ≥
4πn
|Ω|

.

In particular, the minimal values infΩ:|Ω|=A λn(Ω) should also
satisfy the Weyl asymptotics.
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Observation (Antunes–Freitas–K., 2013)
Let Bn be the disjoint union of n balls of area A/n each and fix
α > 0. Then

λn(Bn, α) = C(A)n1/2 + o(n1/2) as n → ∞.

Model case: rectangles (convex domains) and unions of rectangles.

Theorem (Freitas–K., 2019)
Among all rectangles Ω of fixed area, for each fixed α > 0

inf
Ω

λn ∼ n2/3;

among all unions of rectangles Ω of fixed area,

inf
Ω

λn ∼ n1/2.

Moreover: for each α, for n large enough the minimiser is always
the disjoint union of n equal squares.

James Kennedy The eigenvalues of the Robin Laplacian: a survey



For more information (electronic version open access!):
D. Bucur, P. Freitas and J. Kennedy, Chapter 4: The Robin
Problem in A. Henrot (ed), Shape optimization and spectral
theory, De Gruyter Open, Warsaw–Berlin, 2017

Muito obrigado pela atenção!
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