A primer on Ecological Statistics

University of
St Andrews
Tiago A. Marques

Talks are live today (and tomorrow) afternoon, the program and zoom link are available here: cmafcio.campus.ciencias.ulisboa.pt/node/175 @FC_UL. In any case, since it's a close encounter of the 3rd kind, if I go missing, I am leaving this as a crumb trail for the fans of conspiracy theories! (3/3)

8:17 AM - Sep 9, 2020 . Twitter Web App

GlobalChangeBiology
Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale

EARLY VIEW

Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale

Esther Sebastián-González M, Jomar Magalhães Barbosa, Juan M. Pérez-García, Zebensui Morales-Reyes , Francisco Botella, Pedro P. Olea, Patricia Mateo-Tomás, Marcos Moleón, Fernando Hiraldo, Eneko Arrondo, José A. Donázar, Ainara Cortés-Avizanda, Nuria Selva, Sergio A. Lambertucci, Aishwarya Bhattacharjee, Alexis Brewer, José D. Anadón, Erin Abernethy, Olin E. Rhodes Jr, Kelsey Turner, James C. Beasley, Travis L. DeVault, Andrés Ordiz, Camilla Wikenros, Barbara Zimmermann, Petter Wabakken, Christopher C. Wilmers, Justine A. Smith, Corinne J. Kendall, Darcy Ogada, Evan R. Buechley, Ethan
Christopher C. Wilmers, Justine A. Smith, Corinne J. Kendall, Darcy Ogada, Evan R. Buechley, Ethan
Frehner, Maximilian L. Allen, Heiko U. Wittmer, James R. A. Butler, Johan T. du Toit, John Read, David Wilson, Klemen Jerina, Miha Krofel, Rich Kostecke, Richard Inger, Arockianathan Samson, Lara NavesAlegre, José A. Sánchez-Zapata ... See fewer authors \uparrow
First published: 25 May 2019 | https://doi.org/10.1111/gcb. 14708

buff.ly/2LtWnSx

気标 32%
－ 71%
－1 75%
－177\％
－179\％
웅 81%
－ 83%
＿ 85%
－ 87%
-88%
鹪 89%
－ 90%
－ 90%
－90\％
－ 91%
－91\％
＝92\％

标 32%
－ 71%
－ 175%
－ 177%
－ 179%
상 81%
－ 83%
＝85\％

People tend to overinterpret numbers

So many filters．．．

－Self reported values －No reported variance

Variance propagation in multi－stage analysis

Most of my work revolves around...

- Estimation of animal abundance
- Distance sampling
- Passive acoustic density estimation
- Using statistics for improved ecological inferences

Statistics \& Ecology

Context: Who am I ?

- 1998: Binloov dearen at nRA (then ח74) Frill

Around 2001 - Monitor @ Departamento de Matémática, FCUL

- 2002: NISC In Probability ana statistics @ DEIU, FCUL
- 2007: PhD in Statistics @ University of St Andrews(UStA)
- Research Fellow/Senior Research Fellow @ School of Maths and stats @ UStA
- Member of Centro de Estonisure e Aplicações, UL
- 2017/2019: Professor Auxiliar convidado @ DestelusticalO
- 2018/2019: Professor Auxiliar convidado @ DBiologiaA

SAMBAH

Static Acoustic Monitoring of the Baltic Sea Harbour Porpoise - ultimate goal to secure conservation of the Baltic Sea harbour porpoise.

+-300 C-PODS

450 years of acoustic data!

RESEARCH ARTICLE
.. Full Access

Monitoring large and complex wildlife aggregations with drones

```
Mitchell B. Lyons , Kate J. Brandis, Nicholas J. Murray, John H. Wilshire, Justin A. McCann, Richard T Kingsford, Corey T. Callaghan
```

First published: 19 April 2019 | https://doi.org/10.1111/2041-210X. 13194
"The smallest colony had a manual count of 7,717 nests and the largest colony had 96,989 nests, and with an estimated population of over 200,000 birds..."

Machine learning random forest classifier

In Edinburgh sometime last year (i.e. a different

 time a different world) statisticians help to spread the word about our research to the group of people that should be using the methods we develop: ecologists?"

Acoustics, drones, camera traps, environmental DNA, biologging, citizen science, etc.

- All are based on new technological advances
- All generate massive amounts of data
- Require bespoke ways for
- Data processing
- Data analysis

International
Centre for
Mathematical
Sciences

Addressing statistical challenges of modern technological advances ICMS, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT

Summary

Technology and citizen science are introducing far-reaching changes to how biodiversity is monitored. Better models are needed to allow reliable inferences from the resulting data.

International Statistical Ecology Conference

International Statistical Ecology Conference

BIOLOGY
 LETTERS

rsbl.royalsocietypublishing.org
Meeting report $\odot \substack{\text { cross } \\ \text { datco }}$
Cite this article: Gimenere 0 eta 2014 Statisical ecology comes of age. Biol. Lett. 10 :
2014069.

Population ecology
Statistical ecology comes of age
Olivier Gimenez¹, Stephen T. Buckland ${ }^{2}$, Byron J. T. Morgan ${ }^{3}$, Nicolas Bez ${ }^{4}$, Sophie Bertrand ${ }^{4}$, Rémi Choquet ${ }^{1}$, Stéphane Dray ${ }^{5}$, Marie-Pierre Etienne ${ }^{6}$, Rachel Fewster ${ }^{7}$, Frédéric Gosselin ${ }^{8}$, Bastien Mérigot ${ }^{9}$, Pascal Monestiez ${ }^{10}$, Juan M. Morales ${ }^{11}$, Frédéric Mortier ${ }^{12}$, François Munoz ${ }^{13}$, Otso Ovaskainen ${ }^{14}$, Sandrine Pavoine ${ }^{15,16}$, Roger Pradel ${ }^{1}$, Frank M. Schurr ${ }^{17}$, Len Thomas ${ }^{2}$, Wilfried Thuiller ${ }^{18}$, Verena Trenkel ${ }^{19}$, Perry de Valpine ${ }^{20}$ and Eric Rexstad ${ }^{2}$ CEFE UMR 5175 , CNRS, Univesité de Montpellier, Univesité Paul-Valéry Montpellier, EPHE, 1919 Route de Mende, 34293 Montellier Cede 5, France
Centre for Research into Ecologial and Envionmental Modeling, Univesity of St Andrew

The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

Species distribution modelling

 scavengers into land-abandonment scenarios? The Cinereous vulture in the Mediterranean biome. Diversity and Distributions 24: 1018-1031

Measuring biodiversity

Marques, J. T. , Pereira, M. R., Marques, T. A., Santos, C. D., Santana, J., Beja, P. \& Palmeirim, J. M. 2013 Optimizing sampling design to deal with mist-net avoidance in amazonian birds and bats. PLoS One, 8:e74505.

Investigating population dynamics

	2004			2015		Change, 2004 to 2015	
	\hat{N}	$\hat{N} 95 \% \mathrm{Cl}$	\hat{N}	$\hat{N} 95 \% \mathrm{Cl}$	$\Delta \hat{N}$	$\Delta \hat{N} 95 \% \mathrm{Cl}$	
Svalbard	241	$(153,329)$	264	$(199,363)$	23	$(-97,143)$	
Pack Ice	444	$(282,606)$	709	$(334,1026)$	265	$(-117,647)$	
Total	685	$(501,869)$	973	$(665,1884)$	288	$(-349,925)$	

Ongoing CARMMHA work (dolphins in GOM)

Aars, J.; Marques, T.; Lone, K.; Andersen, M.; Wiig, \emptyset.; Fløystad, I. M. B.; Hagen, S. B. \& Buckland, S. T. 2017 The number and distribution of polar bears in the western Barents Sea area. Polar Biology. 36: 1374125

Understanding animal movements

Laplanche, C., Marques, T. A. \& Thomas, L. 2015 Tracking marine mammals in 3D using electronic tag data. Methods in Ecology and Evolution. 6: 987-996

Interpreting citizen science data

Tiago, P., Ceia-Hasse, A. Marques, T. A., Capinha, C. \& Pereira, H. M. (2017) Spatial distribution of citizen science casuistic observations for different taxonomic groups. Scientific Reports. 7: 12832

Methods

- Ecological statistics is moving away from modelling spatio-temporal patterns per se and towards modelling the ecological processes that generate those patterns.
- Hidden Process Models - Underlying latent states with observations
- Hidden Markov Models
- State Space Models
- Hierarchical models

Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions

Roland Langrock, ${ }^{1,5}$ Ruth King, ${ }^{1}$ Jason Matthiopoulos, ${ }^{2}$ Len Thomas, ${ }^{1}$ Daniel Fortin, ${ }^{3}$ and Juan M. Morales ${ }^{4}$

Figure 3. Dependence structure of an HMM.

Journal of Applied Ecology

Journal of Applied Ecology
Bayesian state-space model of fin whale abundance trends from a 1991-2008 time series of line-transect surveys in the California Current

Jeffrey E. Moore* and Jay Barlow

Hierarchical model

J. ANDREW ROYLE • ROBERT M. DORAZIO

HIERARCHICAL MODELING AND INFERENCE IN ECOLOGY

$y_{i} \mid z_{i} \sim \operatorname{Bernoulli}\left(z_{i} p\right)$
$z_{i} \sim \operatorname{Bernoulli}\left(\psi_{i}\right)$
$\operatorname{logit}\left(\psi_{i}\right)=\beta_{0}+\beta_{1} x_{i}$.
$y_{i} \mid z_{i} \sim \operatorname{Binomial}\left(J, z_{i} p\right)$

REALITY, NATURE \& FILTERS

We want to make inferences about reality

- But what is reality?

29 teams, 61 analysts, same data same research question: are soccer referees are more likely to give red cards to dark-skin-toned than light-skin-toned players?

- Analytic approaches varied widely across teams
- 20 teams (69%) found a statistically significant + effect, and 9 teams (31\%) did not observe a significant relationship.

What is (ecological) reality...?

- A response (acorn count), three designed effects (species, site, and year) and 7 environmental variables
- "explain variation in response variable (acorn count) using the predictors available"
- responses from a skilled average self-reported statistical expertise of 6.7 on scale of 1 [low] to 10 [high]) diverse group of 24 ecologists
- no two final models included exactly the same set of predictors
- not a single predictor was included in every final model

So whatever reality is... filters are hard to undo!

statistical significance does not imply biological significance

ACTA OECOLOGICA $34(2008) 9-1$ I

available at www.sciencedirect.com

Original article
Statistical significance and biological relevance: A call for a more cautious interpretation of results in ecology

Alejandro Martínez-Abraín*
"We conclude, based on our review of the articles in this special issue and the broader literature, that it is time to stop using the term "statistically significant" entirely. Nor should variants such as "significantly different," " $p<0.05$," and "nonsignificant" survive, whether expressed in words, by asterisks in a table, or in some other way."

- It does not matter if you agree with progress, the only thing you can do about it is to adapt!
- Statistical significance is dead...

I CANNOT SAY WHETHER THINGS wIILGET BETLR If WE LHANGE; WHAT 1 CAN SAY IS THEY must change If THEY ARE TO GET BET EN.
GONG C. LICHTENAERG

ANY CHANGE, EVEN A CHANGE FOR THE BETTER, IS ALWAYS ACCOMPANIED BY DGAWGACHS AMD DISCOMFORTS AENGLIT

- An ecologist should know enough statistics to avoid major pitfalls, implement a set of standard methods and know when to ask for help
- But the key is to turn your brain on before turning your computer...

Thank you! Any questions?

